[404218]: / Code / All PennyLane QML Demos / 15 Geometric QML 5 Steps kkawchak.ipynb

Download this file

1291 lines (1290 with data), 352.5 kB

{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 28,
      "metadata": {
        "id": "_VCz6stSPtCC"
      },
      "outputs": [],
      "source": [
        "# This cell is added by sphinx-gallery\n",
        "# It can be customized to whatever you like\n",
        "%matplotlib inline\n",
        "# !pip install pennylane"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "exXC6t6_PtCD"
      },
      "source": [
        "Introduction to Geometric Quantum Machine Learning\n",
        "==================================================\n",
        "\n",
        "::: {.meta}\n",
        ":property=\\\"og:description\\\": Using the natural symmetries in a quantum\n",
        "learning problem can improve learning :property=\\\"og:image\\\":\n",
        "<https://pennylane.ai/qml/_images/equivariant_thumbnail.jpeg>\n",
        ":::\n",
        "\n",
        "::: {.related}\n",
        "tutorial\\_equivariant\\_graph\\_embedding A permutation equivariant graph\n",
        "embedding\n",
        ":::\n",
        "\n",
        "*Author: Richard East --- Posted: 18 October 2022.*\n",
        "\n",
        "Introduction\n",
        "------------\n",
        "\n",
        "Symmetries are at the heart of physics. Indeed in condensed matter and\n",
        "particle physics we often define a thing simply by the symmetries it\n",
        "adheres to. What does symmetry mean for those in machine learning? In\n",
        "this context the ambition is straightforward --- it is a means to reduce\n",
        "the parameter space and improve the trained model\\'s ability to\n",
        "sucessfully label unseen data, i.e., its ability to generalise.\n",
        "\n",
        "Suppose we have a learning task and the data we are learning from has an\n",
        "underlying symmetry. For example, consider a game of Noughts and Crosses\n",
        "(aka Tic-tac-toe): if we win a game, we would have won it if the board\n",
        "was rotated or flipped along any of the lines of symmetry. Now if we\n",
        "want to train an algorithm to spot the outcome of these games, we can\n",
        "either ignore the existence of this symmetry or we can somehow include\n",
        "it. The advantage of paying attention to the symmetry is it identifies\n",
        "multiple configurations of the board as \\'the same thing\\' as far as the\n",
        "symmetry is concerned. This means we can reduce our parameter space, and\n",
        "so the amount of data our algorithm must sift through is immediately\n",
        "reduced. Along the way, the fact that our learning model must encode a\n",
        "symmetry that actually exists in the system we are trying to represent\n",
        "naturally encourages our results to be more generalisable. The encoding\n",
        "of symmetries into our learning models is where the term *equivariance*\n",
        "will appear. We will see that demanding that certain symmetries are\n",
        "included in our models means that the mappings that make up our\n",
        "algorithms must be such that we could transform our input data with\n",
        "respect to a certain symmetry, then apply our mappings, and this would\n",
        "be the same as applying the mappings and then transforming the output\n",
        "data with the same symmetry. This is the technical property that gives\n",
        "us the name \\\"equavariant learning\\\".\n",
        "\n",
        "In classical machine learning, this area is often referred to as\n",
        "geometric deep learning (GDL) due to the traditional association of\n",
        "symmetry to the world of geometry, and the fact that these\n",
        "considerations usually focus on deep neural networks (see or for a broad\n",
        "introduction). We will refer to the quantum computing version of this as\n",
        "*quantum geometric machine learning* (QGML).\n",
        "\n",
        "Representation theory in circuits\n",
        "---------------------------------\n",
        "\n",
        "The first thing to discuss is how do we work with symmetries in the\n",
        "first place? The answer lies in the world of group representation\n",
        "theory.\n",
        "\n",
        "First, let\\'s define what we mean by a group:\n",
        "\n",
        "**Definition**: A group is a set $G$ together with a binary operation on\n",
        "$G$, here denoted $\\circ$, that combines any two elements $a$ and $b$ to\n",
        "form an element of $G$, denoted $a \\circ b$, such that the following\n",
        "three requirements, known as group axioms, are satisfied as follows:\n",
        "\n",
        "1.  **Associativity**: For all $a, b, c$ in $G$, one has\n",
        "    $(a \\circ b) \\circ c=a \\circ (b \\circ c)$.\n",
        "\n",
        "2.  \n",
        "\n",
        "    **Identity element**: There exists an element $e$ in $G$ such that, for every $a$ in $G$, one\n",
        "\n",
        "    :   has $e \\circ a=a$ and $a \\circ e=a$. Such an element is unique.\n",
        "        It is called the identity element of the group.\n",
        "\n",
        "3.  \n",
        "\n",
        "    **Inverse element**: For each $a$ in $G$, there exists an element $b$ in $G$\n",
        "\n",
        "    :   such that $a \\circ b=e$ and $b \\circ a=e$, where $e$ is the\n",
        "        identity element. For each $a$, the element $b$ is unique: it is\n",
        "        called the inverse of $a$ and is commonly denoted $a^{-1}$.\n",
        "\n",
        "With groups defined, we are in a position to articulate what a\n",
        "representation is: Let $\\varphi$ be a map sending $g$ in group $G$ to a\n",
        "linear map $\\varphi(g): V \\rightarrow V$, for some vector space $V$,\n",
        "which satisfies\n",
        "\n",
        "$$\\varphi\\left(g_{1} g_{2}\\right)=\\varphi\\left(g_{1}\\right) \\circ \\varphi\\left(g_{2}\\right) \\quad \\text { for all } g_{1}, g_{2} \\in G.$$\n",
        "\n",
        "The idea here is that just as elements in a group act on each other to\n",
        "reach further elements, i.e., $g\\circ h = k$, a representation sends us\n",
        "to a mapping acting on a vector space such that\n",
        "$\\varphi(g)\\circ \\varphi(h) = \\varphi(k)$. In this way we are\n",
        "representing the structure of the group as a linear map. For a\n",
        "representation, our mapping must send us to the general linear group\n",
        "$GL(n)$ (the space of invertible $n \\times n$ matrices with matrix\n",
        "multiplication as the group multiplication). Note how this is both a\n",
        "group, and by virtue of being a collection of invertible matrices, also\n",
        "a set of linear maps (they\\'re all invertble matrices that can act on\n",
        "row vectors). Fundamentally, representation theory is based on the\n",
        "prosaic observation that linear algebra is easy and group theory is\n",
        "abstract. So what if we can study groups via linear maps?\n",
        "\n",
        "Now due to the importance of unitarity in quantum mechnics, we are\n",
        "particularly interested in the unitary representations: representations\n",
        "where the linear maps are unitary matrices. If we can identify these\n",
        "then we will have a way to naturally encode groups in quantum circuits\n",
        "(which are mostly made up of unitary gates).\n",
        "\n",
        "![](../demonstrations/geometric_qml/sphere_equivariant.png){.align-center\n",
        "width=\"45.0%\"}\n",
        "\n",
        "How does all this relate to symmetries? Well, a large class of\n",
        "symmetries can be characterised as a group, where all the elements of\n",
        "the group leave some space we are considering unchanged. Let\\'s consider\n",
        "an example: the symmetries of a sphere. Now when we think of this\n",
        "symmetry we probably think something along the lines of \\\"it\\'s the same\n",
        "no matter how we rotate it, or flip it left to right, etc\\\". There is\n",
        "this idea of being invariant under some operation. We also have the idea\n",
        "of being able to undo these actions: if we rotate one way, we can rotate\n",
        "it back. If we flip the sphere right-to-left we can flip it\n",
        "left-to-right to get back to where we started (notice too all these\n",
        "inverses are unique). Trivially we can also do nothing. What exactly are\n",
        "we describing here? We have elements that correspond to an action on a\n",
        "sphere that can be inverted and for which there exists an identity. It\n",
        "is also trivially the case here that if we consider three operations a,\n",
        "b, c from the set of rotations and reflections of the sphere, that if we\n",
        "combine two of them together then\n",
        "$a\\circ (b \\circ c) = (a\\circ b) \\circ c$. The operations are\n",
        "associative. These features turn out to literally define a group!\n",
        "\n",
        "As we\\'ve seen the group in itself is a very abstract creature; this is\n",
        "why we look to its representations. The group labels what symmetries we\n",
        "care about, they tell us the mappings that our system is invariant\n",
        "under, and the unitary representations show us how those symmetries look\n",
        "on a particular space of unitary matrices. If we want to encode the\n",
        "structure of the symmeteries in a quantum circuit we must restrict our\n",
        "gates to being unitary representations of the group.\n",
        "\n",
        "There remains one question: *what is equivariance?* With our newfound\n",
        "knowledge of group representation theory we are ready to tackle this.\n",
        "Let $G$ be our group, and $V$ and $W$, with elements $v$ and $w$\n",
        "respectively, be vector spaces over some field $F$ with a map $f$\n",
        "between them. Suppose we have representations\n",
        "$\\varphi: G \\rightarrow GL(V)$ and $\\psi: G \\rightarrow GL(W)$.\n",
        "Furthermore, let\\'s write $\\varphi_g$ for the representation of $g$ as a\n",
        "linear map on $V$ and $\\psi_g$ as the same group element represented as\n",
        "a linear map on $W$ respectively. We call $f$ *equivariant* if\n",
        "\n",
        "$$f(\\varphi_g(v))=\\psi_g(f(v)) \\quad \\text { for all } g\\in G.$$\n",
        "\n",
        "The importance of such a map in machine learning is that if, for\n",
        "example, our neural network layers are equivariant maps then two inputs\n",
        "that are related by some intrinsic symmetry (maybe they are reflections)\n",
        "preserve this information in the outputs.\n",
        "\n",
        "Consider the following figure for example. What we see is a board with a\n",
        "cross in a certain square on the left and some numerical encoding of\n",
        "this on the right, where the 1 is where the X is in the number grid. We\n",
        "present an equivariant mapping between these two spaces with respect to\n",
        "a group action that is a rotation or a swap (here a $\\pi$ rotation). We\n",
        "can either apply a group action to the original grid and then map to the\n",
        "number grid, or we could map to the number grid and then apply the group\n",
        "action. Equivariance demands that the result of either of these\n",
        "procedures should be the same.\n",
        "\n",
        "![](../demonstrations/geometric_qml/equivariant-example.jpg){.align-center\n",
        "width=\"80.0%\"}\n",
        "\n",
        "Given the vast amount of input data required to train a neural network\n",
        "the principle that one can pre-encode known symmetry structures into the\n",
        "network allows us to learn better and faster. Indeed it is the reason\n",
        "for the success of convolutional neural networks (CNNs) for image\n",
        "analysis, where it is known they are equivariant with respect to\n",
        "translations. They naturally encode the idea that a picture of a dog is\n",
        "symmetrically related to the same picture slid to the left by n pixels,\n",
        "and they do this by having neural network layers that are equivariant\n",
        "maps. With our focus on unitary representations (and so quantum\n",
        "circuits) we are looking to extend this idea to quantum machine\n",
        "learning.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ugPilCpKPtCF"
      },
      "source": [
        "Noughts and Crosses\n",
        "===================\n",
        "\n",
        "Let\\'s look at the game of noughts and crosses, as inspired by. Two\n",
        "players take turns to place a O or an X, depending on which player they\n",
        "are, in a 3x3 grid. The aim is to get three of your symbols in a row,\n",
        "column, or diagonal. As this is not always possible depending on the\n",
        "choices of the players, there could be a draw. Our learning task is to\n",
        "take a set of completed games labelled with their outcomes and teach the\n",
        "algorithm to identify these correctly.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "daTwFY-GPtCG"
      },
      "source": [
        "This board of nine elements has the symmetry of the square, also known\n",
        "as the *dihedral group*. This means it is symmetric under\n",
        "$\\frac{\\pi}{2}$ rotations and flips about the lines of symmetry of a\n",
        "square (vertical, horizontal, and both diagonals).\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "pXOW9XfePtCG"
      },
      "source": [
        "![](../demonstrations/geometric_qml/NandC_sym.png){.align-center\n",
        "width=\"70.0%\"}\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "81LgOuSiPtCG"
      },
      "source": [
        "**The question is, how do we encode this in our QML problem?**\n",
        "\n",
        "First, let us encode this problem classically. We will consider a\n",
        "nine-element vector $v$, each element of which identifies a square of\n",
        "the board. The entries themselves can be $+1$,$0$,$-1,$ representing a\n",
        "nought, no symbol, or a cross. The label is one-hot encoded in a vector\n",
        "$y=(y_O,y_- , y_X)$ with $+1$ in the correct label and $-1$ in the\n",
        "others. For instance (-1,-1,1) would represent an X in the relevant\n",
        "position.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "EbaXa7F7PtCG"
      },
      "source": [
        "To create the quantum model let us take nine qubits and let them\n",
        "represent squares of our board. We\\'ll initialise them all as\n",
        "$|0\\rangle$, which we note leaves the board invariant under the\n",
        "symmetries of the problem (flip and rotate all you want, it\\'s still\n",
        "going to be zeroes whatever your mapping). We will then look to apply\n",
        "single qubit $R_x(\\theta)$ rotations on individual qubits, encoding each\n",
        "of the possibilities in the board squares at an angle of\n",
        "$\\frac{2\\pi}{3}$ from each other. For our parameterised gates we will\n",
        "have a single-qubit $R_x(\\theta_1)$ and $R_y(\\theta_2)$ rotation at each\n",
        "point. We will then use $CR_y(\\theta_3)$ for two-qubit entangling gates.\n",
        "This implies that, for each encoding, crudely, we\\'ll need 18\n",
        "single-qubit rotation parameters and $\\binom{9}{2}=36$ two-qubit gate\n",
        "rotations. Let\\'s see how, by using symmetries, we can reduce this.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "CS1oXl5EPtCG"
      },
      "source": [
        "![..](../demonstrations/geometric_qml/grid.jpg){.align-center\n",
        "width=\"35.0%\"}\n",
        "\n",
        "The indexing of our game board.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "3lyfUhwJPtCH"
      },
      "source": [
        "The secret will be to encode the symmetries into the gate set so the\n",
        "observables we are interested in inherently respect the symmetries. How\n",
        "do we do this? We need to select the collections of gates that commute\n",
        "with the symmetries. In general, we can use the twirling formula for\n",
        "this:\n",
        "\n",
        "::: {.tip}\n",
        "::: {.title}\n",
        "Tip\n",
        ":::\n",
        "\n",
        "Let $\\mathcal{S}$ be the group that encodes our symmetries and $U$ be a\n",
        "unitary representation of $\\mathcal{S}$. Then,\n",
        "\n",
        "$$\\mathcal{T}_{U}[X]=\\frac{1}{|\\mathcal{S}|} \\sum_{s \\in \\mathcal{S}} U(s) X U(s)^{\\dagger}$$\n",
        "\n",
        "defines a projector onto the set of operators commuting with all\n",
        "elements of the representation, i.e.,\n",
        "$\\left[\\mathcal{T}_{U}[X], U(s)\\right]=$ 0 for all $X$ and\n",
        "$s \\in \\mathcal{S}$.\n",
        ":::\n",
        "\n",
        "The twirling process applied to an arbitrary unitary will give us a new\n",
        "unitary that commutes with the group as we require. We remember that\n",
        "unitary gates typically have the form $W = \\exp(-i\\theta H)$, where $H$\n",
        "is a Hermitian matrix called a *generator*, and $\\theta$ may be fixed or\n",
        "left as a free parameter. A recipe for creating a unitary that commutes\n",
        "with our symmetries is to *twirl the generator of the gate*, i.e., we\n",
        "move from the gate $W = \\exp(-i\\theta H)$ to the gate\n",
        "$W' = \\exp(-i\\theta\\mathcal{T}_U[H])$. When each term in the twirling\n",
        "formula acts on different qubits, then this unitary would further\n",
        "simplify to\n",
        "\n",
        "$$W' = \\bigotimes_{s\\in\\mathcal{S}}U(s)\\exp(-i\\tfrac{\\theta}{\\vert\\mathcal{S}\\vert})U(s)^\\dagger.$$\n",
        "\n",
        "For simplicity, we can absorb the normalization factor\n",
        "$\\vert\\mathcal{S}\\vert$ into the free parameter $\\theta$.\n",
        "\n",
        "So let\\'s look again at our choice of gates: single-qubit $R_x(\\theta)$\n",
        "and $R_y(\\theta)$ rotations, and entangling two-qubit $CR_y(\\phi)$\n",
        "gates. What will we get by twirling these?\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "bbVT5h2HPtCH"
      },
      "source": [
        "In this particular instance we can see the action of the twirling\n",
        "operation geometrically as the symmetries involved are all permutations.\n",
        "Let\\'s consider the $R_x$ rotation acting on one qubit. Now if this\n",
        "qubit is in the centre location on the grid, then we can flip around any\n",
        "symmetry axis we like, and this operation leaves the qubit invariant, so\n",
        "we\\'ve identified one equivariant gate immediately. If the qubit is on\n",
        "the corners, then the flipping will send this qubit rotation to each of\n",
        "the other corners. Similarly, if a qubit is on the central edge then the\n",
        "rotation gate will be sent round the other edges. So we can see that the\n",
        "twirling operation is a sum over all the possible outcomes of performing\n",
        "the symmetry action (the sum over the symmetry group actions). Having\n",
        "done this we can see that for a single-qubit rotation the invariant maps\n",
        "are rotations on the central qubit, at all the corners, and at all the\n",
        "central edges (when their rotation angles are fixed to be the same).\n",
        "\n",
        "As an example consider the following figure, where we take a $R_x$ gate\n",
        "in the corner and then apply all the symmetries of a square. The result\n",
        "of this twirling leads us to have the same gate at all the corners.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Qj-0MV6ePtCH"
      },
      "source": [
        "![](../demonstrations/geometric_qml/twirl.jpeg){.align-center\n",
        "width=\"70.0%\"}\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "YkTducrePtCH"
      },
      "source": [
        "For entangling gates the situation is similar. There are three invariant\n",
        "classes, the centre entangled with all corners, with all edges, and the\n",
        "edges paired in a ring.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Wzz4R-IxPtCH"
      },
      "source": [
        "The prediction of a label is obtained via a one-hot-encoding by\n",
        "measuring the expectation values of three invariant observables:\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "UuFwqycTPtCH"
      },
      "source": [
        "$$O_{-}=Z_{\\text {middle }}=Z_{4}$$\n",
        "\n",
        "$$O_{\\circ}=\\frac{1}{4} \\sum_{i \\in \\text { corners }} Z_{i}=\\frac{1}{4}\\left[Z_{0}+Z_{2}+Z_{6}+Z_{8}\\right]$$\n",
        "\n",
        "$$O_{\\times}=\\frac{1}{4} \\sum_{i \\in \\text { edges }} Z_{i}=\\frac{1}{4}\\left[Z_{1}+Z_{3}+Z_{5}+Z_{7}\\right]$$\n",
        "\n",
        "$$\\hat{\\boldsymbol{y}}=\\left(\\left\\langle O_{\\circ}\\right\\rangle,\\left\\langle O_{-}\\right\\rangle,\\left\\langle O_{\\times}\\right\\rangle\\right)$$\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "5STgZUP6PtCI"
      },
      "source": [
        "This is the quantum encoding of the symmetries into a learning problem.\n",
        "A prediction for a given data point will be obtained by selecting the\n",
        "class for which the observed expectation value is the largest.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "WSH0J4_XPtCI"
      },
      "source": [
        "Now that we have a specific encoding and have decided on our observables\n",
        "we need to choose a suitable cost function to optimise. We will use an\n",
        "$l_2$ loss function acting on pairs of games and labels $D={(g,y)}$,\n",
        "where $D$ is our dataset.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BNyvZ0HRPtCI"
      },
      "source": [
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ePThXcVlPtCI"
      },
      "source": [
        "Let\\'s now implement this!\n",
        "\n",
        "First let\\'s generate some games. Here we are creating a small program\n",
        "that will play Noughts and Crosses against itself in a random fashion.\n",
        "On completion, it spits out the winner and the winning board, with\n",
        "noughts as +1, draw as 0, and crosses as -1. There are 26,830 different\n",
        "possible games but we will only sample a few hundred.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 29,
      "metadata": {
        "id": "fBqEnXDYPtCI"
      },
      "outputs": [],
      "source": [
        "import torch\n",
        "import random\n",
        "\n",
        "# Fix seeds for reproducability\n",
        "torch.backends.cudnn.deterministic = True\n",
        "torch.manual_seed(16)\n",
        "random.seed(16)\n",
        "\n",
        "#  create an empty board\n",
        "def create_board():\n",
        "    return torch.tensor([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n",
        "\n",
        "\n",
        "# Check for empty places on board\n",
        "def possibilities(board):\n",
        "    l = []\n",
        "    for i in range(len(board)):\n",
        "        for j in range(3):\n",
        "            if board[i, j] == 0:\n",
        "                l.append((i, j))\n",
        "    return l\n",
        "\n",
        "\n",
        "# Select a random place for the player\n",
        "def random_place(board, player):\n",
        "    selection = possibilities(board)\n",
        "    current_loc = random.choice(selection)\n",
        "    board[current_loc] = player\n",
        "    return board\n",
        "\n",
        "\n",
        "# Check if there is a winner by having 3 in a row\n",
        "def row_win(board, player):\n",
        "    for x in range(3):\n",
        "        lista = []\n",
        "        win = True\n",
        "\n",
        "        for y in range(3):\n",
        "            lista.append(board[x, y])\n",
        "\n",
        "            if board[x, y] != player:\n",
        "                win = False\n",
        "\n",
        "        if win:\n",
        "            break\n",
        "\n",
        "    return win\n",
        "\n",
        "\n",
        "# Check if there is a winner by having 3 in a column\n",
        "def col_win(board, player):\n",
        "    for x in range(3):\n",
        "        win = True\n",
        "\n",
        "        for y in range(3):\n",
        "            if board[y, x] != player:\n",
        "                win = False\n",
        "\n",
        "        if win:\n",
        "            break\n",
        "\n",
        "    return win\n",
        "\n",
        "\n",
        "# Check if there is a winner by having 3 along a diagonal\n",
        "def diag_win(board, player):\n",
        "    win1 = True\n",
        "    win2 = True\n",
        "    for x, y in [(0, 0), (1, 1), (2, 2)]:\n",
        "        if board[x, y] != player:\n",
        "            win1 = False\n",
        "\n",
        "    for x, y in [(0, 2), (1, 1), (2, 0)]:\n",
        "        if board[x, y] != player:\n",
        "            win2 = False\n",
        "\n",
        "    return win1 or win2\n",
        "\n",
        "\n",
        "# Check if the win conditions have been met or if a draw has occurred\n",
        "def evaluate_game(board):\n",
        "    winner = None\n",
        "    for player in [1, -1]:\n",
        "        if row_win(board, player) or col_win(board, player) or diag_win(board, player):\n",
        "            winner = player\n",
        "\n",
        "    if torch.all(board != 0) and winner == None:\n",
        "        winner = 0\n",
        "\n",
        "    return winner\n",
        "\n",
        "\n",
        "# Main function to start the game\n",
        "def play_game():\n",
        "    board, winner, counter = create_board(), None, 1\n",
        "    while winner == None:\n",
        "        for player in [1, -1]:\n",
        "            board = random_place(board, player)\n",
        "            counter += 1\n",
        "            winner = evaluate_game(board)\n",
        "            if winner != None:\n",
        "                break\n",
        "\n",
        "    return [board.flatten(), winner]\n",
        "\n",
        "\n",
        "def create_dataset(size_for_each_winner):\n",
        "    game_d = {-1: [], 0: [], 1: []}\n",
        "\n",
        "    while min([len(v) for k, v in game_d.items()]) < size_for_each_winner:\n",
        "        board, winner = play_game()\n",
        "        if len(game_d[winner]) < size_for_each_winner:\n",
        "            game_d[winner].append(board)\n",
        "\n",
        "    res = []\n",
        "    for winner, boards in game_d.items():\n",
        "        res += [(board, winner) for board in boards]\n",
        "\n",
        "    return res\n",
        "\n",
        "\n",
        "NUM_TRAINING = 450\n",
        "NUM_VALIDATION = 600\n",
        "\n",
        "# Create datasets but with even numbers of each outcome\n",
        "with torch.no_grad():\n",
        "    dataset = create_dataset(NUM_TRAINING // 3)\n",
        "    dataset_val = create_dataset(NUM_VALIDATION // 3)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "xB-FbtShPtCJ"
      },
      "source": [
        "Now let\\'s create the relevant circuit expectation values that respect\n",
        "the symmetry classes we defined over the single-site and two-site\n",
        "measurements.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 30,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 440
        },
        "id": "B3_k2h_IPtCJ",
        "outputId": "bb223621-4009-40ad-89aa-3f4eb2fa2e4d"
      },
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 3600x1000 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAADiQAAAP7CAYAAABh9gf5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdf5iVdZ0//tcwMwy/rfyBu0pMDhgZCmOgQUrYxx+Zu3gpF266fUjYxjKBdPEKEZfLrMuBJJUlWgVWQd36JFm6bVeiXJGSCxV48SOgDVCovApQS2HAYWDO9w++sh6GYc6cOXPOfWYej+u6Lz3vc859v+Y8Z86536/bt6cklUqlAgAAAAAAAAAAAAAAAADgBLoUugAAAAAAAAAAAAAAAAAAIPksSAQAAAAAAAAAAAAAAAAAWmRBIgAAAAAAAAAAAAAAAADQIgsSAQAAAAAAAAAAAAAAAIAWWZAIAAAAAAAAAAAAAAAAALTIgkQAAAAAAAAAAAAAAAAAoEUWJAIAAAAAAAAAAAAAAAAALbIgEQAAAAAAAAAAAAAAAABokQWJAAAAAAAAAAAAAAAAAECLLEgEAAAAAAAAAAAAAAAAAFpkQSIAAAAAAAAAAAAAAAAA0CILEgEAAAAAAAAAAAAAAACAFlmQCAAAAAAAAAAAAAAAAAC0yIJEAAAAAAAAAAAAAAAAAKBFFiQCAAAAAAAAAAAAAAAAAC2yIBEAAAAAAAAAAAAAAAAAaJEFiQAAAAAAAAAAAAAAAABAiyxIBAAAAAAAAAAAAAAAAABaZEEiAAAAAAAAAAAAAAAAANAiCxIBAAAAAAAAAAAAAAAAgBZZkAgAAAAAAAAAAAAAAAAAtMiCRAAAAAAAAAAAAAAAAACgRRYkAgAAAAAAAAAAAAAAAAAtsiARAAAAAAAAAAAAAAAAAGiRBYkAAAAAAAAAAAAAAAAAQIssSAQAAAAAAAAAAAAAAAAAWmRBIgAAAAAAAAAAAAAAAADQIgsSAQAAAAAAAAAAAAAAAIAWWZAIAAAAAAAAAAAAAAAAALTIgkQAAAAAAAAAAAAAAAAAoEUWJAIAAAAAAAAAAAAAAAAALbIgEQAAAAAAAAAAAAAAAABokQWJAAAAAAAAAAAAAAAAAECLLEgEAAAAAAAAAAAAAAAAAFpkQSIAAAAAAAAAAAAAAAAA0CILEgEAAAAAAAAAAAAAAACAFlmQCAAAAAAAAAAAAAAAAAC0yIJEAAAAAAAAAAAAAAAAAKBFFiQCAAAAAAAAAAAAAAAAAC2yIBEAAAAAAAAAAAAAAAAAaJEFiQAAAAAAAAAAAAAAAABAiyxIBAAAAAAAAAAAAAAAAABaZEEiAAAAAAAAAAAAAAAAANAiCxIBAAAAAAAAAAAAAAAAgBZZkAgAAAAAAAAAAAAAAAAAtMiCRAAAAAAAAAAAAAAAAACgRRYkAgAAAAAAAAAAAAAAAAAtsiARAAAAAAAAAAAAAAAAAGiRBYkAAAAAAAAAAAAAAAAAQIssSAQAAAAAAAAAAAAAAAAAWmRBIgAAAAAAAAAAAAAAAADQIgsSAQAAAAAAAAAAAAAAAIAWWZAIAAAAAAAAAAAAAAAAALTIgkQAAAAAAAAAAAAAAAAAoEUWJAIAAAAAAAAAAAAAAAAALbIgEQAAAAAAAAAAAAAAAABokQWJAAAAAAAAAAAAAAAAAECLLEgEAAAAAAAAAAAAAAAAAFpkQSIAAAAAAAAAAAAAAAAA0CILEgEAAAAAAAAAAAAAAACAFlmQCAAAAAAAAAAAAAAAAAC0yIJEAAAAAAAAAAAAAAAAAKBFFiQCAAAAAAAAAAAAAAAAAC2yIBEAAAAAAAAAAAAAAAAAaJEFiQAAAAAAAAAAAAAAAABAiyxIBAAAAAAAAAAAAAAAAABaZEEiAAAAAAAAAAAAAAAAANAiCxIBAAAAAAAAAAAAAAAAgBaVFboAyIf6+vp45ZVXYuvWrbFt27Z4/fXX45133on6+vpCl5amoqIiunXrFqecckoMGDAgBg4cGGeddVZUVFQUurSckkeyyAMAAKBzMh8EAAAAAChO+rsAAEC+mH9wPBYk0iEdOnQoXnjhhVi6dGksW7Ysdu7cGalUqtBlZaWkpCT69+8fV1xxRYwbNy4++clPRllZcf3pyiNZ5AEAANA5mQ8CAAAAABQn/V0AACBfzD/IREmqWH8r4Di2bdsW3/rWt+Kpp56KPXv2FLqcdnHqqafG2LFj4/bbb4+qqqpCl3NC8kgWeQAAAHRO5oMAAAAAAMVJfxcAAMgX8w9aw4JEOoT9+/fHrFmzYvbs2XHw4MFCl5MXFRUV8dWvfjXuuOOO6NGjR6HLSSMPeRRakvMAAADIF/NB80EAAAAAoDjp7+rvAgBAvph/mH9kw4JEit5zzz0XN910U+zcubPFx/bt2zcGDBgQ/fr1ix49ekTXrl2jS5cueaiyZY2NjXHw4MHYv39//OEPf4ht27bFrl27WnxeZWVlPPzww3H55ZfnocqWyUMe7aGj5AEAAJAv5oPmgwAAAABAcdLf1d8FAIB86Wjzj40bN8af/vSnaGhoMP9oZxYkUtR+9KMfxXXXXReHDh067v0f+9jHYty4cXHppZfGwIEDo0+fPnmusG3efvvt2Lp1ayxfvjyefPLJePnll4/7uLKysnjyySfjmmuuyXOF6eRxhDzyo9jyAAAAyBfzwSPMBwEAAACAYqO/e4T+LgAAtL+ONP9obGyMO++8M2bPnh0//OEP45prrjH/aGcWJFK0mnvzKy0tjcmTJ8fkyZPjrLPOKlB17WP79u3x7W9/O+bNmxeHDx9Ou6/Qb4LykEehJTkPAACAfDEfNB8EAAAAAIqT/q7+LgAA5EtHmn8cOHAgxo8fHz/4wQ8iIuJPf/pTnH766U0eZ/6RWxYkUpSee+65uOqqq5q8+Y0aNSrmz58fgwcPLlBl+fGb3/wmbrnllnjxxRfTxsvKyuInP/lJ3r8uVh7ySJKk5QEAAJAv5oPmgwAAAABAcdLf1d8FAIB86Ujzj127dsWYMWPiV7/6VUREVFZWxquvvnrC55h/5IYFiRSd/fv3xznnnBM7d+5MG6+pqYmHHnoounTpUqDK8quxsTG+9KUvxcKFC9PGKysrY/PmzdG9e/e81CGPI+SRLEnJAwAAIF/MB48wHwQAAAAAio3+7hH6uwAA0P460vxj06ZNcdVVV6X9LNdff31897vfbfG55h9tVzy/KfD/mzVrVod482urLl26xEMPPRQ1NTVp4zt27IhZs2blrQ55HCGPZElKHgAAAPliPniE+SAAAAAAUGz0d4/Q3wUAgPbXUeYfy5cvj5EjRzb5WUaMGJHR880/2s43JFJUtm3bFoMHD476+vqjY6NGjYoVK1YU1ZtfLjU2Nsbo0aNj5cqVR8cqKipi06ZNUVVV1a7HlkdT8kiWQuYBAACQL+aDTZkPAgAAAADFQH+3Kf1dAABoHx1l/rFo0aK4+eab49ChQ03u+/Wvfx3Dhg3LeF/mH9krnt8YiIhvfetbaW9+paWlMX/+/KJ688u1Ll26xPz586O0tPToWH19fcyZM6fdjy2PpuSRLIXMAwAAIF/MB5syHwQAAAAAioH+blP6uwAA0D6Kff7R2NgY06ZNi5qamuMuRuzevXsMGTKkVfs0/8hecfzWQEQcOnQonnrqqbSxyZMnx+DBgwtUUXKce+65MXny5LSxH/7wh8d9k80VeTRPHslSiDwAAADyxXyweeaDAAAAAECS6e82T38XAAByq9jnHwcOHIjrrrsuvvnNbzb7mGHDhkV5eXmr923+kR0LEikaL7zwQuzZsydt7Ng/+s5s0qRJabd3794dL774YrsdTx4nJo9kyXceAAAA+WI+eGLmgwAAAABAUunvnpj+LgAA5E4xzz927doVo0ePbrKg8lgjRozI+hjmH61nQSJFY+nSpWm3P/axj8VZZ51VoGqSp6qqKs4///y0sWNfs1ySx4nJI1nynQcAAEC+mA+emPkgAAAAAJBU+rsnpr8LAAC5U6zzj02bNsWFF14Yv/rVr9LGu3RpuhyuLQsSzT9az4JEisayZcvSbo8bN65AlSTXsa/Jsa9ZLsmjZfJIlnzmAQAAkC/mgy0zHwQAAAAAkkh/t2X6uwAAkBvFOP94/vnnY+TIkbFz58608ZNOOinmzJnT5PEf//jH23Q884/WsSCRolBfX9/kTeTSSy8tUDXJddlll6Xd3rlzZ9TX1+f8OPLIjDySJV95AAAA5Iv5YGbMBwEAAACApNHfzYz+LgAAtF0xzj8WLlwYV155Zbz99ttp45WVlfHf//3f0aNHjybjp59+epuOaf7ROhYkUhReeeWVSKVSaWNnn312gapJroEDB6bdbmxsjFdffTXnx5FHZuSRLPnKAwAAIF/MBzNjPggAAAAAJI3+bmb0dwEAoO2Kaf7R2NgY06ZNi5tuuikOHz6cdt+FF14Yq1evjnPOOSdWrVqVdt+IESPafGzzj9axIJGisHXr1rTbffv2jd69exeomuTq06dPnHbaaWljx752uSCPzMgjWfKVBwAAQL6YD2bGfBAAAAAASBr93czo7wIAQNsVy/xj//79cd1118U3v/nN497/+OOPR9++fSMi2mVBovlH61iQSFHYtm1b2u0BAwYUqJLkO3ZVdnu8Acojc/JIlnzkAQAAkC/mg5kzHwQAAAAAkkR/N3P6uwAA0DbFMv94880348CBA83ef/bZZ8eVV14Zr7/+evzud79Luy8XCxIjzD9aw4JEisLrr7+edrtfv34FqiT5zjzzzLTbb7zxRs6PIY/MySNZ8pEHAABAvpgPZs58EAAAAABIEv3dzOnvAgBA2xTL/OPMM8+M//qv/4pnnnkmKisrj/uYZ599Nk499dS0se7du8eQIUNyVsN7mX80z4JEisI777yTdrtHjx4FqiT5jn1tjn3tckEemZNHsuQjDwAAgHwxH8yc+SAAAAAAkCT6u5nT3wUAgLZJ8vzj8OHDcfjw4aO3S0pKYsyYMbF58+aYOXNmRvsYNmxYlJeX56Qe84/MlRW6AMhEfX192u2uXbsWqJLkq6ioSLvdHm+A8sicPJIlH3kAAADki/lg5swHAQAAAIAk0d/NnP4uAAC0TaHnHwcPHoz169enbZs2bYq9e/dGQ0NDRESUl5dH796946Mf/WgMGTIkhgwZEh/84Acz2v+IESNyVqv5R+YsSKQodeniyz2bU4jXRh7Nk0eyeG0AAICOzJyneV4bAAAAACDJ9DCb57UBAIDcytc59rp16+KRRx6J//iP/4g333zzhI9taGiIN998M1auXBkrV65s1XFyuSDR/CNzFiQCAAAAAAAAAAAAAAAAkLVDhw7Fv//7v8dDDz0U69aty/n+r7rqqli+fHnatz5+/OMfz/lxaJkFiQAAAAAAAAAAAAAAAABkZdWqVXHzzTfH+vXr2+0YP/nJT2LQoEHx/ve/P1atWhWVlZVx+umnt9vxaJ4FiQAAAAAAAAAAAAAAAAC0yhtvvBF33HFHLFq06ISPO/vss2PIkCFHtzPOOCMqKioiIqK+vj5ee+21WL9+fXz9619P+wbEY/32t7+NiIjLLrssBg8enLsfhFaxIBEAOoGGhobYu3dvRET07t07ysvLC1wRAADkjvNdAIDccn4FAADki/kHAABA8Vq3bl383d/9Xbz22mvHvb9fv35x4403xuc///moqqo64b6qq6vj5JNPjrvuuiujYz///POxefPmGD9+fAwdOrS1pdNGXQpdAADQPtatWxdTpkyJ4cOHR69eveLkk0+Ok08+OXr16hXDhw+PKVOmtOtXYgMAQHtyvgsAkFvOrwAAgHwx/wAAACh+zz77bFx00UXHXYw4ePDg+OlPfxqvvvpq3HPPPS0uRoyISKVSMXLkyCbjDzzwQPz0pz897rchvvbaa3HRRRfFs88+m90PQdYsSASADmbDhg0xatSoqK6ujnnz5sWaNWvi4MGDR+8/ePBgrFmzJubNmxdDhw6NUaNGxYYNGwpYMQAAZM75LgBAbjm/AgAA8sX8AwAAoGP48Y9/HGPGjIm6urq08Z49e8acOXPi5Zdfjk9/+tNRWlqa8T5nzJhx3PFbb701Pv3pT8fLL78cc+bMiZ49e6bdX1dXF1dffXX8+Mc/bv0PQtYsSASADiKVSsWsWbNi2LBhsXLlyoyft3Llyhg2bFjMmjUrUqlUO1YIAADZc74LAJBbzq8AAIB8Mf8AAADoOF566aUYO3ZsNDQ0pI1ffPHFsWXLlpg6dWqUl5e3ap979+6N2traJuNbtmw5+u/l5eUxderU2LJlS1x00UVpjzt48GCMHTs2XnrppVYdl+xZkAgAHUAqlYrJkyfH9OnTm5zcZaKhoSGmT58ekydP1sQHACBxnO8CAOSW8ysAACBfzD8AAAA6jr/85S9xww03NJnfXX/99fH8889Hv379stpvVVVVk7Hq6uoYNGhQk/F+/frF8uXL4/rrr08bb2hoiBtuuCH++te/ZlUDrdMpFiT++te/js985jPxvve9L3r27Bkf//jH48knnyx0WSTYjh07oqSkJG0rLy+PM844I6677rpYs2ZN2uP37t0blZWV0a1bt9i8efNx9zl79uwoKSmJL3zhC/n4EToUeSRTprk8+OCDUVJSEhMmTGh2Xz//+c+jS5cuMXz48Dh06FC+foQOZfbs2TF//vw272f+/Pkxe/bsHFQEAAC543w3WcwHAaD4Ob8CAADyxfwjWfR3AQCAbKVSqaipqYnf//73aeMTJ06Mxx9/PCoqKrLa76pVq2LPnj1NxlevXt3scyoqKuLxxx+PiRMnpo3//ve/j5qaGv9DmzwoK3QB7W3FihVxxRVXRLdu3eKzn/1s9O7dO5566qn4h3/4h/jDH/4QU6dOLXSJJFhVVVV87nOfi4iIurq6WLt2bSxdujSefvrpWL58eYwaNSoiInr37h2PPPJIXHrppfH5z38+Vq1aFWVl//vntXHjxpg5c2b0798/HnjggYL8LB2BPJKppVy+8pWvxDPPPBOLFy+Oa6+9Nv7+7/8+7fn79u2LCRMmREVFRTz22GNpWZGZDRs2xMyZM3O2v5kzZ8ZnPvOZOO+883K2TwAAyJbz3eQyHwSA4uT8CgAAyBfzj+TS3wUAAFpr4cKF8dRTT6WNjR49OhYsWBClpaVZ7TOVSsXIkSObjM+dOze6du16wueWlpbGggULYvv27fHCCy8cHf/BD34QixYtipqamqxqIjMd+hsSDx06FDU1NdGlS5d48cUXY8GCBfGtb30r1q9fH2effXbceeedsXPnzkKXSYINGDAg7r777rj77rvjvvvui5/97GdRW1sbDQ0N8S//8i9pj/3Upz4Vt9xyS6xZsybuvffeo+MNDQ0xfvz4aGhoiEcffTR69+6d7x+jw5BHMrWUS0lJSSxevDj69OkTNTU18cYbb6Q9f+rUqbFjx46ora2Nj3zkIwX6KYrbpEmTmnztdVs0NDTEpEmTcrY/AABoC+e7yWU+CADFyfkVAACQL+YfyaW/CwAAtMb+/ftj+vTpaWMf+MAH4oknnsh6MWJExIwZM447PmXKlIyeX1paGk888UR84AMfSBufPn167N+/P+u6aFmHXpD4s5/9LLZv3x433HBDDB069Oj4SSedFHfeeWccPHgwlixZUrgCKUr/9E//FBERa9eubXLf7NmzY8CAAfGNb3wj1q1bFxER99xzT6xbty4mT54cl1xyST5L7RTkkUzH5tK/f/948MEHY9euXXHzzTcffdyyZctiwYIFcckll8RXvvKVgtRa7NatWxcrV67M+X5XrlwZ69evz/l+AQCgNZzvFh/zQQBINudXAABAvph/FB/9XQAAoDmLFy+ON998M23s0UcfjTPOOCPrfe7duzdqa2ubjG/ZsqVV+znzzDPjkUceSRt74403rBdrZx16QeLPf/7ziIi4/PLLm9x3xRVXRESkfS0ntEZZWVmTsR49esTixYvj8OHDMX78+PjFL34RtbW18eEPfzhmzZpVgCo7D3kk03tzmTBhQowZMyaWLl0a3/ve9+Kvf/1rfOELX4g+ffrEo48+GiUlJQWstHgde/JULPsGAIBMON8tXuaDAJBMzq8AAIB8Mf8oXvq7AADAex0+fDjuv//+tLErr7wyxowZ06b9VlVVNRmrrq6OQYMGtXpfV199dVx55ZVpY/fff38cPnw46/o4sQ69IHHr1q0RETFw4MAm951++unRq1evo4+BTC1atCgiIi666KLj3v+JT3wi/vmf/zk2btwYl156aURELFmyJLp37563GjsTeSRTc7ksWLAgTjnllLjlllvixhtvjD/+8Y/x4IMPRv/+/QtRZoewatWqotw3AABkwvlu8TEfBIBkc34FAADki/lH8dHfBQAAjueZZ56J7du3p43dfvvtbdrnqlWrYs+ePU3GV69enfU+p06dmnZ727Zt8Z//+Z9Z748Ta/qVYh3IW2+9FRERJ5100nHv79Onz9HHFItUKhX79+8vdBl519DQUJDjbtu2Le6+++6IiKirq4u1a9fGihUrom/fvnHfffc1+7yZM2fG/Pnz48CBAzFp0qS48MIL81RxUw0NDVFXV5fzfRaCPJrfZyG1Jpe+ffvGww8/HGPHjo1nnnkmxowZExMmTChA1Ue0Rx751NDQEBs2bGi3/W/YsCHeeuut434DKQAAtDfnuy0zH8xesc8HASAbzq8AAIB8Mf9omf5u9vR3AQCgddo6/3jyySfTbldXV8cll1yS9f5SqVSMHDmyyfjcuXOja9euWe/3U5/6VAwdOjTWrVt3dOz73/9+XHPNNVnvk+YV74y8k9q/f3/06tWr0GV0Gtu3b4+vfe1raWOnn356rFy5MgYMGNDs8+bMmRMHDhyIiIhnn3029u/fHz169GjXWpuzcOHCWLhwYUGOnWvySKbW5nLttdfGBRdcEL/61a9i1qxZ+SrzuDpiHrlUX18f73vf+wpdBgAAtAvnu21nPggAvJfzKwAAIF/MP9pOfxcAAMjUsd9aeNNNN0VJSUnW+5sxY8Zxx6dMmZL1PiMiSkpK4qabboovf/nLR8d++ctftmmfNK9LoQtoT+9+M2Jz34L49ttvN/vtiRARccUVV0QqlYpUKhW7d++O++67L3bv3h1jxoyJffv2Hfc5a9eujXvvvTc+/OEPx+233x7btm2L6dOn57nyjkkeyZRNLt27d0/7JwAAAMXHfBAAAAAAoDjp7wIAAJn485//HDt37kwbu+iii7Le3969e6O2trbJ+JYtW7Le53sdW9uOHTti165dOdk36Tr0NyQOHDgwIiK2bt0aH/vYx9Lu+/Of/xz79u2LCy64oBClZa1Hjx7NTvg7sttuu63g/1ejU089NW6//fZ466234hvf+Ebcdddd8eCDD6Y9pr6+PsaPHx+pVCqWLFkS559/fjz33HMxb968GDt2bIwaNSrvddfU1MQDDzyQ033KI3sdNY93ZZJLkrRHHvnU0NAQffv2jYMHD7bL/isqKmLXrl1RVtahTxcAAEgo57stMx/MXrHPBwEgG86vAACAfDH/aJn+bvb0dwEAoHXaMv849hsGe/fuHR/5yEeyrqWqqqrJWHV1dQwaNCjrfb7XOeecE7169Upbd/XLX/4yxowZk5P987+Kd0aegU9+8pNRW1sbzz33XHz2s59Nu2/ZsmVHH1NMSkpKomfPnoUuI+/Ky8sLXcJRd955ZzzyyCPxne98J2699daorKw8et9dd90VmzdvjunTp8eFF14YERFLliyJCy64ICZOnBgbNmyIHj165LXe8vLynP/OyCN7HT2Pd50olyRpjzzy7bzzzos1a9a02759kzAAAIXkfPfEzAez1xHmgwCQDedXAABAvph/nJj+bvb0dwEAoHXaMv9Yv3592u3hw4dHaWlpVvtatWpV7Nmzp8n46tWrs9rf8ZSWlsbw4cNjxYoVR8fWrVtnQWI76FLoAtrT//k//yfOOuus+O53vxvr1q07Ov7WW2/FvffeG127do3x48cXrkCKUvfu3WPatGnR0NAQX//614+Ov/TSS3H//ffHueeeG3fffffR8aFDh8aMGTNi+/btMW3atAJU3LHJI5may4XcGzFiRFHuGwAAMuF8t/iYDwJAsjm/AgAA8sX8o/jo7wIAAMfau3dv2u1+/fpltZ9UKhUjR45sMj537tzo2rVrVvtszrE1vvfbEsmdDr0gsaysLBYtWhSNjY0xatSouOmmm2Lq1KkxZMiQ+N3vfhf33ntvYv8vPiTbTTfdFH/7t38bjz32WGzfvj3q6urixhtvjNLS0liyZEmTN8QZM2ZEdXV1zJ8/P1544YUCVd1xySOZjs2F9jFx4sSi3DcAAGTC+W5xMh8EgORyfgUAAOSL+Udx0t8FAADea8iQIfHZz342rr766rj88svj3HPPzWo/M2bMOO74lClT2lLecZ133nlx+eWXx9VXXx2f/exnY8iQITk/Bh18QWJExCWXXBK/+MUv4hOf+ER8//vfj3/7t3+Lvn37xv/7f/8vpk6dWujyKFLdunWL6dOnx6FDh+JrX/tafPWrX41t27bFXXfdFdXV1U0eX1ZWFkuWLIny8vKYMGFC1NXVFaDqjkseyXRsLrSPoUOHxsUXX5zz/V588cVOvgAAKDjnu8XJfBAAksv5FQAAkC/mH8VJfxcAAHivz33uc/G9730vnn766Vi2bFlW67D27t0btbW1Tca3bNmSixKbmDp1aixbtiyefvrp+N73vhf/+I//2C7H6ezKCl1APlxwwQXx05/+tNBlUEQqKysjlUqd8DGTJk2KSZMmHb09f/78Ez7+3HPPjfr6+pzU19nII5myyeVdP//5z9upqs7p29/+dgwbNiwaGhpysr/y8vIW/4YAACBfnO8mj/kgABQ351cAAEC+mH8kj/4uAACQb1VVVU3GqqurY9CgQQWohlzp8N+QCAAd3XnnnRf33HNPzvZ3zz33ZP112gAAkGvOdwEAcsv5FQAAkC/mHwAAAJ3bqlWrYs+ePU3GV69eXYBqyCULEgGgA5g2bVrccsstbd7PpEmTYtq0aTmoCAAAcsf5LgBAbjm/AgAA8sX8AwAAoHNKpVIxcuTIJuNz586Nrl27FqAicsmCRADoAEpKSmLevHlRW1sb5eXlrX5+eXl51NbWxr/+679GSUlJO1QIAADZc74LAJBbzq8AAIB8Mf8AAADonGbMmHHc8SlTpuS5EtqDBYkA0EGUlJTEHXfcEWvWrImLL7444+ddfPHFsXbt2rjjjjs07wEASCznuwAAueX8CgAAyBfzDwAAgM5l7969UVtb22R8y5YtBaiG9lBW6AIAgNw677zz4sUXX4z169fHI488EqtWrYr169fHwYMHIyKioqIizjvvvBgxYkRMnDgxhgwZUuCKAQAgc853AQByy/kVAACQL+YfAAAAnUNVVVWTserq6hg0aFABqqE9WJAIAB3UkCFDYu7cuRER8dZbb8X73ve+iIjYtWtXnHTSSQWsDAAA2s75LgBAbjm/AgAA8sX8AwAAoONatWpV7Nmzp8n46tWrC1AN7aVLoQsAANpfWVnZcf8dAAA6Aue7AAC55fwKAADIF/MPAACAjiOVSsXIkSObjM+dOze6du1agIpoLxYkAgAAAAAAAAAAAAAAAJC1GTNmHHd8ypQpea6E9mZBIgAAAAAAAAAAAAAAAABZ2bt3b9TW1jYZ37JlSwGqob1ZkAgAAAAAAAAAAAAAAABAVqqqqpqMVVdXx6BBgwpQDe3NgkSKUmNjY6FLSKxCvDbyaJ48ksVrAwAAdGTmPM3z2gAAAAAASaaH2TyvDQAA5FZ7nGP/9re/jT179jQZX716dc6P1Z7MPzJnQSJFoaKiIu32wYMHC1RJ8tXX16fd7tatW86PIY/MySNZ8pEHAABAvpgPZs58EAAAAABIEv3dzOnvAgBA27T3/COVSsWtt97aZHzu3LnRtWvXnB6rvZl/ZM6CRIrCsX/E+/fvL1AlyXfsa9Meb4DyyJw8kiUfeQAAAOSL+WDmzAcBAAAAgCTR382c/i4AALRNe88/du/eHf/zP/+TNvb+978/pkyZktPj5IP5R+YsSKQonHLKKWm3//CHPxSokuT74x//mHb75JNPzvkx5JE5eSRLPvIAAADIF/PBzJkPAgAAAABJor+bOf1dAABom/aef/Tt2zc2b94cM2fOjIqKiujZs2ds2LAhp8fIF/OPzFmQSFEYMGBA2u1t27YVqJLk27p1a9rtgQMH5vwY8sicPJIlH3kAAADki/lg5swHAQAAAIAk0d/NnP4uAAC0TT7mH927d4+vfe1rsWnTpnjsscfizDPPzPkx8sH8I3MWJFIUjv0j3rVrV7z99tsFqia53n777di9e3faWHu8AcojM/JIlnzlAQAAkC/mg5kxHwQAAAAAkkZ/NzP6uwAA0Hb5nH9UVVXFtdde2y77bm/mH61jQSJF4ayzzoqSkpK0sWNXHtP0NenSpUt86EMfyvlx5JEZeSRLvvIAAADIF/PBzJgPAgAAAABJo7+bGf1dAABoO/OPzJh/tI4FiRSFioqK6N+/f9rY8uXLC1RNcj3//PNpt/v37x8VFRU5P448MiOPZMlXHgAAAPliPpgZ80EAAAAAIGn0dzOjvwsAAG1n/pEZ84/WsSCRonHFFVek3V66dGmBKkmuY1+TY1+zXJJHy+SRLPnMAwAAIF/MB1tmPggAAAAAJJH+bsv0dwEAIDfMP1pm/tE6FiRSNMaNG5d2e+3atfHKK68UqJrk2b59e7z88stpY8e+ZrkkjxOTR7LkOw8AAIB8MR88MfNBAAAAACCp9HdPTH8XAAByx/zjxMw/Ws+CRIrGJz/5yTj11FPTxubNm1egapLn29/+dtrt0047LUaNGtVux5PHickjWfKdBwAAQL6YD56Y+SAAAAAAkFT6uyemvwsAALlj/nFi5h+tZ0EiRaOsrCzGjh2bNjZv3rz4zW9+U6CKkmPjxo1NPgyuvfbaKCsra7djyqN58kiWQuQBAACQL+aDzTMfBAAAAACSTH+3efq7AACQW+YfzTP/yE5JKpVKFboIyNT27dvjox/9aNTX1x8dGzVqVKxYsSK6dOmc62sbGxtj9OjRsXLlyqNjFRUVsWnTpqiqqmrXY8ujKXkkSyHzSJq6urro1atXRETs27cvevbsWeCKAAAgdzr7+a75YFPmgwDQNp39/AoAAMifzj7/0N9tSn8XAADah/lHU+Yf2eucvzEUraqqqvjqV7+aNvbiiy/Gl770pWhsbCxQVYXT2NgYX/rSl9Le/CIipk2blpc3P3mkk0eyFDoPAACAfDEfTGc+CAAAAAAUC/3ddPq7AADQfsw/0pl/tI1vSKTo7N+/P84555zYuXNn2nhNTU089NBDnWZl9rtvfgsXLkwbr6ysjM2bN0f37t3zUoc8jpBHsiQljyTp7P9HQQAAOjbnu+aD7zIfBIDccH4FAADki/mH/u679HcBAKD9mX8cYf7Rdp3jN4UOpUePHrFgwYIoKytLG1+4cGGMHj06Nm7cWKDK8mfjxo0xevToJm9+ZWVl8fDDD+f1zU8e8kiaJOUBAACQL+aD5oMAAAAAQHHS39XfBQCAfDH/MP/IFQsSKUqXX355PPnkk03eBFeuXBnV1dVx2223xfbt2wtUXfvZvn173HbbbVFdXd3ka2HLysriySefjMsvvzzvdclDHkmQ1DwAAADyxXzQfBAAAAAAKE76u/q7AACQL+Yf5h+5UJJKpVKFLgKy9aMf/Siuu+66OHTo0HHvP//882PcuHFx2WWXxcCBA6NPnz55rrBt3n777di6dWs8//zzsXTp0nj55ZeP+7h33/yuueaaPFeYTh5HyCM/ii2PQqurq4tevXpFRMS+ffuiZ8+eBa4IAAByx/luOvPBI8wHASB7zq8AAIB8Mf9Ip797hP4uAAC0P/OPI8w/smNBIkXvueeeiy9+8YuxY8eOFh972mmnxcCBA+PMM8+MHj16REVFRXTpkowvCm1sbIz6+vrYv39//PGPf4ytW7fG7t27W3xeZWVlPPzww4lZiS0PebSHjpJHIWngAwDQkTnfbcp80HwQANrC+RUAAJAv5h9N6e/q7wIAQL6Yf5h/ZMuCRDqEAwcOxKxZs2L27NlRX19f6HLyoqKiIqZNmxZ33HFHdO/evdDlpJGHPAotyXkUigY+AAAdmfPd4zMfNB8EgGw5vwIAAPLF/OP49Hf1dwEAIF/MP8w/smFBIh3K9u3bY86cOfHUU0/Fnj17Cl1OuzjttNPi2muvjdtvvz2qqqoKXc4JySNZ5NG5aeADANCROd89MfNBAKC1nF8BAAD5Yv5xYvq7AABAvph/0BoWJNIhHTp0KF588cVYunRpLFu2LHbs2BHF+qteUlISlZWVccUVV8S4ceNi1KhRUVZWVuiyWkUeySKPzkkDHwCAjsz5bmbMBwGATDm/AgAA8sX8IzP6uwAAQL6Yf5AJCxLpFOrr6+PVV1+NrVu3xtatW+ONN96Id955J955551Cl5amW7du0a1btzj55JNj4MCBMXDgwPjQhz4UFRUVhS4tp+SRLPLoHDTwAQDoyJzvZqe95oMNDQ2xcOHCiIioqamJ8vLyNu3PfBAA8s/5FQAAkC/mH9nR3wUAAPLFegOOx4JEAOgENPABAOjInO8mizwAoPj5PAcAAPLF/CNZ5AEAAEAmuhS6AAAAAAAAAAAAAAAAAAAg+SxIBAAAAAAAAAAAAAAAAABaZEEiAAAAAAAAAAAAAAAAANAiCxIBAAAAAAAAAAAAAAAAgBZZkAgAAAAAAAAAAAAAAAAAtMiCRAAAAAAAAAAAAAAAAACgRRYkAgAAAAAAAAAAAAAAAAAtsiARAAAAAAAAAAAAAAAAAGiRBYkAAAAAAAAAAAAAAAAAQIssSAQAAAAAAAAAAAAAAAAAWmRBIgAAAAAAAAAAAAAAAADQIgsSAQAAAAAAAAAAAAAAAIAWWZAIAAAAAAAAAAAAAAAAALTIgkQAAAAAAAAAAAAAAAAAoEUWJAIAAAAAAAAAAAAAAAAALbIgEQAAAAAAAAAAAAAAAABokQWJAAAAAAAAAAAAAAAAAECLLEgEAAAAAAAAAAAAAAAAAFpkQSIAAAAAAAAAAAAAAAAA0KKyQhcA+VBfXx+vvPJKbN26NbZt2xavv/56vPPOO1FfX1/o0tJUVFREt27d4pRTTokBAwbEwIED46yzzoqKiopCl5ZT8kgWeSRLe+XR0NBw9N9vu+22KC8vb9P+5OHvAwAAAIDC009MFv1EAAAAAACgo3H9g+MpSaVSqUIXAbl26NCheOGFF2Lp0qWxbNmy2LlzZxTrr3pJSUn0798/rrjiihg3blx88pOfjLKy4lpLLI9kkUeyyCNZ5AEAUJzq6uqiV69eERGxb9++6NmzZ4Er6tzkAQDtR/8qWeQBAABtp5+YLPIAAABc/yATFiTSoWzbti2+9a1vxVNPPRV79uwpdDnt4tRTT42xY8fG7bffHlVVVYUu54TkkSzySBZ5JIs8AACKm/9AIlnkAQC5p3+VLPIAAIDc0U9MFnkAAEDn5foHrWFBIh3C/v37Y9asWTF79uw4ePBgocvJi4qKivjqV78ad9xxR/To0aPQ5aSRhzwKTR7JIo9kSXIeAADZ8h9IJIs8ACB39K+S1b+SR7LyAACgY9BPTBZ5AABA5+P6h+sf2bAgkaL33HPPxU033RQ7d+5s8bF9+/aNAQMGRL9+/aJHjx7RtWvX6NKlSx6qbFljY2McPHgw9u/fH3/4wx9i27ZtsWvXrhafV1lZGQ8//HBcfvnleaiyZfKQR3uQhzzagzySlQcAQFv4DySSRR4AkBv6V8nqX8kjWXkAANBx6CcmizwAAKBz6WjXPzZu3Bh/+tOfoqGhwfWPdmZBIkXtRz/6UVx33XVx6NCh497/sY99LMaNGxeXXnppDBw4MPr06ZPnCtvm7bffjq1bt8by5cvjySefjJdffvm4jysrK4snn3wyrrnmmjxXmE4eR8gjP+SRLPJIlmLLAwCgrfwHEskiDwBoO/2rI5LSv5LHEUnJAwCAjkU/MVnkAQAAnUdHuv7R2NgYd955Z8yePTt++MMfxjXXXOP6RzuzIJGi1dybX2lpaUyePDkmT54cZ511VoGqax/bt2+Pb3/72zFv3rw4fPhw2n2FfhOUhzwKTR7JIo9kSXIeAAC54D+QSBZ5AEDb6F8lq38lj2TlAQBAx6OfmCzyAACAzqEjXf84cOBAjB8/Pn7wgx9ERMSf/vSnOP3005s8zvWP3LIgkaL03HPPxVVXXdXkzW/UqFExf/78GDx4cIEqy4/f/OY3ccstt8SLL76YNl5WVhY/+clP8v51sfKQR5LII1nkkSxJywMAIFf8BxLJIg8AyJ7+VbL6V/JIVh4AAHRM+onJIg8AAOj4OtL1j127dsWYMWPiV7/6VUREVFZWxquvvnrC57j+kRsWJFJ09u/fH+ecc07s3LkzbbympiYeeuih6NKlS4Eqy6/Gxsb40pe+FAsXLkwbr6ysjM2bN0f37t3zUoc8jpBHssgjWeSRLEnJAwAgl/wHEskiDwDIjv7VEUnpX8njiKTkAQBAx6WfmCzyAACAjq0jXf/YtGlTXHXVVWk/y/XXXx/f/e53W3yu6x9tVzy/KfD/mzVrVod482urLl26xEMPPRQ1NTVp4zt27IhZs2blrQ55HCGPZJFHssgjWZKSBwAAAADp9K+OSEr/Sh5HJCUPAAAAAACg7TrK9Y/ly5fHyJEjm/wsI0aMyOj5rn+0nW9IpKhs27YtBg8eHPX19UfHRo0aFStWrCiqN79camxsjNGjR8fKlSuPjlVUVMSmTZuiqqqqXY8tj6bkkSzySBZ5JEsh8wAAyDX/x+ZkkQcAtJ7+VVP6icminwgAQHvRT0wWeQAAQMfVUa5/LFq0KG6++eY4dOhQk/t+/etfx7BhwzLel+sf2Sue3xiIiG9961tpb36lpaUxf/78onrzy7UuXbrE/Pnzo7S09OhYfX19zJkzp92PLY+m5JEs8kgWeSRLIfMAAAAAIJ3+VVP6icminwgAAAAAAMWt2K9/NDY2xrRp06Kmpua4ixG7d+8eQ4YMadU+Xf/IXnH81kBEHDp0KJ566qm0scmTJ8fgwYMLVFFynHvuuTF58uS0sR/+8IfHfZPNFXk0Tx7JIo9kkUeyFCIPAAAAANLpXzVPPzFZ9BMBAAAAAKA4Ffv1jwMHDsR1110X3/zmN5t9zLBhw6K8vLzV+3b9IzsWJFI0XnjhhdizZ0/a2LF/9J3ZpEmT0m7v3r07XnzxxXY7njxOTB7JIo9kkUey5DsPAAAAANLpX52YfmKy6CcCAAAAAEDxKebrH7t27YrRo0c3WVB5rBEjRmR9DNc/Ws+CRIrG0qVL025/7GMfi7POOqtA1SRPVVVVnH/++Wljx75muSSPE5NHssgjWeSRLPnOAwAAAIB0+lcnpp+YLPqJAAAAAABQfIr1+semTZviwgsvjF/96ldp4126NF0O15YFia5/tJ4FiRSNZcuWpd0eN25cgSpJrmNfk2Nfs1ySR8vkkSzySBZ5JEs+8wAAAAAgnf5Vy/QTk0U/EQAAAAAAiksxXv94/vnnY+TIkbFz58608ZNOOinmzJnT5PEf//jH23Q81z9ax4JEikJ9fX2TN5FLL720QNUk12WXXZZ2e+fOnVFfX5/z48gjM/JIFnkkizySJV95AAAAAJBO/yoz+onJop8IAAAAAADFoxivfyxcuDCuvPLKePvtt9PGKysr47//+7+jR48eTcZPP/30Nh3T9Y/WsSCRovDKK69EKpVKGzv77LMLVE1yDRw4MO12Y2NjvPrqqzk/jjwyI49kkUeyyCNZ8pUHAAAAAOn0rzKjn5gs+okAAAAAAFA8iun6R2NjY0ybNi1uuummOHz4cNp9F154YaxevTrOOeecWLVqVdp9I0aMaPOxXf9oHQsSKQpbt25Nu923b9/o3bt3gapJrj59+sRpp52WNnbsa5cL8siMPJJFHskij2TJVx4AAAAApNO/yox+YrLoJwIAAAAAQPEolusf+/fvj+uuuy6++c1vHvf+xx9/PPr27RsR0S4LEl3/aB0LEikK27ZtS7s9YMCAAlWSfMeuym6PN0B5ZE4eySKPZJFHsuQjDwAAAADS6V9lTj8xWfQTAQAAAACgOBTL9Y8333wzDhw40Oz9Z599dlx55ZXx+uuvx+9+97u0+3KxIDHC9Y/WsCCRovD666+n3e7Xr1+BKkm+M888M+32G2+8kfNjyCNz8kgWeSSLPJIlH3kAAAAAkE7/KnP6icminwgAAAAAAMWhWK5/nHnmmfFf//Vf8cwzz0RlZeVxH/Pss8/GqaeemjbWvXv3GDJkSM5qeC/XP5pnQSJF4Z133km73aNHjwJVknzHvjbHvna5II/MySNZ5JEs8kiWfOQBAAAAQDr9q8zpJyaLfiIAAAAAABSHJF//OHz4cBw+fPjo7ZKSkhgzZkxs3rw5Zs6cmdE+hg0bFuXl5Tmpx/WPzJUVugDIRH19fdrtrl27FqiS5KuoqEi73R5vgPLInDySRR7JIo9kyUceAAAAAKTTv8qcfmKy6CcCAAAAAEBxKPT1j4MHD8b69evTtk2bNsXevXujoaEhIiLKy8ujd+/e8dGPfjSGDBkSQ4YMiQ9+8IMZ7X/EiBE5q9X1j8xZkEhR6tLFl3s2pxCvjTyaJ49kkUeyyCNZvDYAAAAAhadH0zz9xGTx2gAAAAAAQHHKV49/3bp18cgjj8R//Md/xJtvvnnCxzY0NMSbb74ZK1eujJUrV7bqOLlckOj6R+YsSAQAAAAAAAAAAAAAAAAga4cOHYp///d/j4ceeijWrVuX8/1fddVVsXz58rRvffz4xz+e8+PQMgsSAQAAAAAAAAAAAAAAAMjKqlWr4uabb47169e32zF+8pOfxKBBg+L9739/rFq1KiorK+P0009vt+PRPAsSAQAAAAAAAAAAAAAAAGiVN954I+64445YtGjRCR939tlnx5AhQ45uZ5xxRlRUVERERH19fbz22muxfv36+PrXv572DYjH+u1vfxsREZdddlkMHjw4dz8IrWJBIgAAAAAAAAXV0NAQe/fujYiI3r17R3l5eYErAgAAAAAgE/q7AJ3XunXr4u/+7u/itddeO+79/fr1ixtvvDE+//nPR1VV1Qn3VV1dHSeffHLcddddGR37+eefj82bN8f48eNj6NChrS2dNupS6AIAAAAAAADofNatWxdTpkyJ4cOHR69eveLkk0+Ok08+OXr16hXDhw+PKVOmxPr16wtdJgAAAAAAx9DfBeDZZ5+Niy666LiLEQcPHhw//elP49VXX4177rmnxcWIERGpVCpGjhzZZPyBBx6In/70p8f9NsTXXnstLrroonj22Wez+yHImgWJAAAAAAAA5M2GDRti1KhRUV1dHfPmzYs1a9bEwYMHj95/8ODBWLNmTcybNy+GDh0ao0aNig0bNhSwYgAAAAAAIvR3ATjixz/+cYwZMybq6urSxnv27Blz5syJl19+OT796U9HaWlpxvucMWPGccdvvfXW+PSnPx0vv/xyzJkzJ3r27Jl2f11dXVx99dXx4x//uPU/CFmzIBEAAAAAAIB2l0qlYtasWTFs2LBYuXJlxs9buXJlDBs2LGbNmhWpVKodKwQAAAAA4Hj0dwF410svvRRjx46NhoaGtPGLL744tmzZElOnTo3y8vJW7XPv3r1RW1vbZHzLli1H/728vDymTp0aW7ZsiYsuuijtcQcPHoyxY8fGSy+91Krjkj0LEgEAAAAAAGhXqVQqJk+eHNOnT29ycTITDQ0NMX369Jg8ebL/aAUAAAAAII/0dwF411/+8pe44YYbmnweXH/99fH8889Hv379stpvVVVVk7Hq6uoYNGhQk/F+/frF8uXL4/rrr08bb2hoiBtuuCH++te/ZlUDrdPhFyQ+8cQT8cUvfjGGDRsWFRUVUVJSEosXLy50WSTcjh07oqSkJG0rLy+PM844I6677rpYs2ZN2uP37t0blZWV0a1bt9i8efNx9zl79uwoKSmJL3zhC/n4EToUeSRTprk8+OCDUVJSEhMmTGh2Xz//+c+jS5cuMXz48Dh06FC+foQORR7JIg8AAACAdLNnz4758+e3eT/z58+P2bNn56Cizk3/KlnkAQAAAECS6e8CEHFkgXpNTU38/ve/TxufOHFiPP7441FRUZHVfletWhV79uxpMr569epmn1NRURGPP/54TJw4MW3897//fdTU1FgAnwdlhS6gvd11112xc+fOOOWUU+Jv/uZvYufOnYUuiSJSVVUVn/vc5yIioq6uLtauXRtLly6Np59+OpYvXx6jRo2KiIjevXvHI488Epdeeml8/vOfj1WrVkVZ2f/+eW3cuDFmzpwZ/fv3jwceeKAgP0tHII9kaimXr3zlK/HMM8/E4sWL49prr42///u/T3v+vn37YsKECVFRURGPPfZYWla0njySRR4AAAAAERs2bIiZM2fmbH8zZ86Mz3zmM3HeeeflbJ+dlf5VssgDAAAAgKTR3wXgXQsXLoynnnoqbWz06NGxYMGCKC0tzWqfqVQqRo4c2WR87ty50bVr1xM+t7S0NBYsWBDbt2+PF1544ej4D37wg1i0aFHU1NRkVROZ6fDfkLho0aLYsWNH7NmzJ770pS8VuhyKzIABA+Luu++Ou+++O+6777742c9+FrW1tdHQ0BD/8i//kvbYT33qU3HLLbfEmjVr4t577z063tDQEOPHj4+GhoZ49NFHo3fv3vn+MToMeSRTS7m8+820ffr0iZqamnjjjTfSnj916tTYsWNH1NbWxkc+8pEC/RQdhzySRR4AAAAAEZMmTYqGhoac7a+hoSEmTZqUs/11ZvpXySIPAAAAAJJGfxeAiIj9+/fH9OnT08Y+8IEPxBNPPJH1YsSIiBkzZhx3fMqUKRk9v7S0NJ544on4wAc+kDY+ffr02L9/f9Z10bIOvyDx0ksvjf79+xe6DDqQf/qnf4qIiLVr1za5b/bs2TFgwID4xje+EevWrYuIiHvuuSfWrVsXkydPjksuuSSfpXYK8kimY3Pp379/PPjgg7Fr1664+eabjz5u2bJlsWDBgrjkkkviK1/5SkFq7QzkkSzyAAAAADqTdevWxcqVK3O+35UrV8b69etzvl/0r5JGHgAAAAAUiv4uAO9avHhxvPnmm2ljjz76aJxxxhlZ73Pv3r1RW1vbZHzLli2t2s+ZZ54ZjzzySNrYG2+8EUuWLMm6NlrW4RckQnspKytrMtajR49YvHhxHD58OMaPHx+/+MUvora2Nj784Q/HrFmzClBl5yGPZHpvLhMmTIgxY8bE0qVL43vf+1789a9/jS984QvRp0+fePTRR6OkpKSAlXYO8kgWeQAAAACdwbEX/4pl3+hfJY08AAAAAMg3/V0AIiIOHz4c999/f9rYlVdeGWPGjGnTfquqqpqMVVdXx6BBg1q9r6uvvjquvPLKtLH7778/Dh8+nHV9nJgFidBKixYtioiIiy666Lj3f+ITn4h//ud/jo0bN8all14aERFLliyJ7t27563GzkQeydRcLgsWLIhTTjklbrnllrjxxhvjj3/8Yzz44IO+ybadySNZ5AEAAAB0JqtWrSrKfXdm+lfJIg8AAAAACkV/F4CIiGeeeSa2b9+eNnb77be3aZ+rVq2KPXv2NBlfvXp11vucOnVq2u1t27bFf/7nf2a9P06s6VeKkWipVCr2799f6DLyrqGhoSDH3bZtW9x9990REVFXVxdr166NFStWRN++feO+++5r9nkzZ86M+fPnx4EDB2LSpElx4YUX5qniphoaGqKuri7n+ywEeTS/z0JqTS59+/aNhx9+OMaOHRvPPPNMjBkzJiZMmFCAqo+QhzzamzwAAPLjvectzmEKTx4AvKuhoSE2bNjQbvvfsGFDvPXWW2nfHFds9K+yp5/Y8fMAAKBz0E9MFnkA8C79XYCOo63XP5588sm029XV1XHJJZdkvb9UKhUjR45sMj537tzo2rVr1vv91Kc+FUOHDo1169YdHfv+978f11xzTdb75ARSnUhtbW0qIlKPPvpooUvJ2r59+1IR0em3L3/5y+36Or/66qvNHvv0009Pbd269YTPnzlz5tHHDxgwIFVXV9eu9b7Xl7/8ZXkcQx7toy25XHDBBamISG3evDkvtb5LHscnj9yTh81ms9lsNpvNZrPZbDabLZtN/6p5+onH15nysNlsNpvNZrPZbDabzWaz2Ww2m83W9q211z/69++f9vx/+7d/a9M1hunTpx+3rlz4zne+k7bPysrKVj3/2Osf+bpWVIy6BNCsK664IlKpVKRSqdi9e3fcd999sXv37hgzZkzs27fvuM9Zu3Zt3HvvvfHhD384br/99ti2bVtMnz49z5V3TPJIpmxy6d69e9o/yR15JIs8AAAAAEgy/atkkQcAAAAAAJAkf/7zn2Pnzp1pYxdddFHW+9u7d2/U1tY2Gd+yZUvW+3yvY2vbsWNH7Nq1Kyf7Jp3vOC4yPXr0aPaCY0d22223xcKFCwtaw6mnnhq33357vPXWW/GNb3wj7rrrrnjwwQfTHlNfXx/jx4+PVCoVS5YsifPPPz+ee+65mDdvXowdOzZGjRqV97pramrigQceyOk+5ZG9jprHuzLJJUnkkSzySJb2yAMAoL3U1dVF3759IyJi165d0bNnzwJX1LnJA4B3NTQ0RN++fePgwYPtsv+KiorYtWtXlJUV7+Uu/avs6Scmi34iAADZ0k9MFnkA8C79XYCOoy3XP375y1+m3e7du3d85CMfybqWqqqqJmPV1dUxaNCgrPf5Xuecc0706tUrbd3VL3/5yxgzZkxO9s//8gleZEpKSjrlJL+8vLzQJRx15513xiOPPBLf+c534tZbb43Kysqj9911112xefPmmD59elx44YUREbFkyZK44IILYuLEibFhw4bo0aNHXustLy/P+e+MPLLX0fN414lySRJ5JIs8kqU98gAAyIeePXs6j0kQeQBw3nnnxZo1a9pt3yeddFK77Dtf9K+yp5+YLPqJAADkgn5issgDAP1dgI6hLdc/1q9fn3Z7+PDhUVpamtW+Vq1aFXv27Gkyvnr16qz2dzylpaUxfPjwWLFixdGxdevWWZDYDroUugAoNt27d49p06ZFQ0NDfP3rXz86/tJLL8X9998f5557btx9991Hx4cOHRozZsyI7du3x7Rp0wpQcccmj2RqLhcKQx7JIg8AAACgMxkxYkRR7rsz079KFnkAAAAAUCj6uwDs3bs37Xa/fv2y2k8qlYqRI0c2GZ87d2507do1q30259ga3/ttieROh1+QuGjRorjxxhvjxhtvjKVLlzYZW7RoUYErpBjddNNN8bd/+7fx2GOPxfbt26Ouri5uvPHGKC0tjSVLljR5Q5wxY0ZUV1fH/Pnz44UXXihQ1R2XPJLp2FwoLHkkizwAAACAzmLixIlFue/OTv8qWeQBAAAAQCHo7wIwZMiQ+OxnPxtXX311XH755XHuuedmtZ8ZM2Ycd3zKlCltKe+4zjvvvLj88svj6quvjs9+9rMxZMiQnB+DTrAg8Re/+EUsWbIklixZEi+//HJEHPnmtHfHfvGLXxS4QopRt27dYvr06XHo0KH42te+Fl/96ldj27Ztcdddd0V1dXWTx5eVlcWSJUuivLw8JkyYEHV1dQWouuOSRzIdmwuFJY9kkQcAAADQWQwdOjQuvvjinO/34osvdvGwHelfJYs8AAAAACgE/V0APve5z8X3vve9ePrpp2PZsmUxderUVu9j7969UVtb22R8y5YtuSixialTp8ayZcvi6aefju9973vxj//4j+1ynM6urNAFtLfFixfH4sWLC10GRaaysjJSqdQJHzNp0qSYNGnS0dvz588/4ePPPffcqK+vz0l9nY08kimbXN7185//vJ2q6rzkkSzyAAAAAPhf3/72t2PYsGHR0NCQk/2Vl5e32APmxPSvkkUeAAAAACSV/i4AbVVVVdVkrLq6OgYNGlSAasiVDv8NiQAAAAAAABTOeeedF/fcc0/O9nfPPffEueeem7P9AQAAAABwfPq7ALTFqlWrYs+ePU3GV69eXYBqyCULEgEAAAAAAGhX06ZNi1tuuaXN+5k0aVJMmzYtBxUBAAAAAJAJ/V0AspFKpWLkyJFNxufOnRtdu3YtQEXkkgWJAAAAAAAAtKuSkpKYN29e1NbWRnl5eaufX15eHrW1tfGv//qvUVJS0g4VAgAAAABwPPq7AGRjxowZxx2fMmVKniuhPViQCAAAAAAAQLsrKSmJO+64I9asWRMXX3xxxs+7+OKLY+3atXHHHXf4j1UAAAAAAApAfxeA1ti7d2/U1tY2Gd+yZUsBqqE9lBW6AAAAAAAAADqP8847L1588cVYv359PPLII7Fq1apYv359HDx4MCIiKioq4rzzzosRI0bExIkTY8iQIQWuGAAAAACACP1dADJTVVXVZKy6ujoGDRpUgGpoDxYkAgAAAAAAkHdDhgyJuXPnRkTEW2+9Fe973/siImLXrl1x0kknFbAyAAAAAABORH8XgOasWrUq9uzZ02R89erVBaiG9tKl0AUAAAAAAADQuZWVlR333wEAAAAASDb9XQDelUqlYuTIkU3G586dG127di1ARbQXCxIBAAAAAAAAAAAAAAAAyNqMGTOOOz5lypQ8V0J7syARAAAAAAAAAAAAAAAAgKzs3bs3amtrm4xv2bKlANXQ3ixIBAAAAAAAAAAAAAAAACArVVVVTcaqq6tj0KBBBaiG9mZBIkWpsbGx0CUkViFeG3k0Tx7JIo9kkUeyeG0AAAAACk+Ppnn6icnitQEAAAAAgOLUHj3+3/72t7Fnz54m46tXr875sdqT6x+ZsyCRolBRUZF2++DBgwWqJPnq6+vTbnfr1i3nx5BH5uSRLPJIFnkkSz7yAAAAACCd/lXm9BOTRT8RAAAAAACKQ3tf/0ilUnHrrbc2GZ87d2507do1p8dqb65/ZM6CRIrCsX/E+/fvL1AlyXfsa9Meb4DyyJw8kkUeySKPZMlHHgAAAACk07/KnH5isugnAgAAAABAcWjv6x+7d++O//mf/0kbe//73x9TpkzJ6XHywfWPzFmQSFE45ZRT0m7/4Q9/KFAlyffHP/4x7fbJJ5+c82PII3PySBZ5JIs8kiUfeQAAAACQTv8qc/qJyaKfCAAAAAAAxaG9r3/07ds3Nm/eHDNnzoyKioro2bNnbNiwIafHyBfXPzJnQSJFYcCAAWm3t23bVqBKkm/r1q1ptwcOHJjzY8gjc/JIFnkkizySJR95AAAAAJBO/ypz+onJop8IAAAAAADFIR/XP7p37x5f+9rXYtOmTfHYY4/FmWeemfNj5IPrH5mzIJGicOwf8a5du+Ltt98uUDXJ9fbbb8fu3bvTxtrjDVAemZFHssgjWeSRLPnKAwAAAIB0+leZ0U9MFv1EAAAAAAAoHvm8/lFVVRXXXnttu+y7vbn+0ToWJFIUzjrrrCgpKUkbO3blMU1fky5dusSHPvShnB9HHpmRR7LII1nkkSz5ygMAAACAdPpXmdFPTBb9RAAAAAAAKB6uf2TG9Y/WsSCRolBRURH9+/dPG1u+fHmBqkmu559/Pu12//79o6KiIufHkUdm5JEs8kgWeSRLvvIAAAAAIJ3+VWb0E5NFPxEAAAAAAIqH6x+Zcf2jdSxIpGhcccUVabeXLl1aoEqS69jX5NjXLJfk0TJ5JIs8kkUeyZLPPAAAAABIp3/VMv3EZNFPBAAAAACA4uL6R8tc/2gdCxIpGuPGjUu7vXbt2njllVcKVE3ybN++PV5++eW0sWNfs1ySx4nJI1nkkSzySJZ85wEAAABAOv2rE9NPTBb9RAAAAAAAKD6uf5yY6x+tZ0EiReOTn/xknHrqqWlj8+bNK1A1yfPtb3877fZpp50Wo0aNarfjyePE5JEs8kgWeSRLvvMAAAAAIJ3+1YnpJyaLfiIAAAAAABQf1z9OzPWP1rMgkaJRVlYWY8eOTRubN29e/OY3vylQRcmxcePGJh8G1157bZSVlbXbMeXRPHkkizySRR7JUog8AAAAAEinf9U8/cRk0U8EAAAAAIDi5PpH81z/yE5JKpVKFboIyNT27dvjox/9aNTX1x8dGzVqVKxYsSK6dOmc62sbGxtj9OjRsXLlyqNjFRUVsWnTpqiqqmrXY8ujKXkkizySRR7JUsg8AAByra6uLnr16hUREfv27YuePXsWuKLOTR4AZKOzf37oXzWln5gs+okAALSXzj4fTBp5AJANnx8AxcH1j6Zc/8he5/yNoWhVVVXFV7/61bSxF198Mb70pS9FY2NjgaoqnMbGxvjSl76U9uYXETFt2rS8vPnJI508kkUeySKPZCl0HgAAAACk079KV+j+lTzSFToPAAAAAACg7Vz/SOf6R9v4hkSKzv79++Occ86JnTt3po3X1NTEQw891GlWZr/75rdw4cK08crKyti8eXN07949L3XI4wh5JIs8kkUeyZKUPAAAcsn/cTNZ5AFANnx+6F+9Kyn9K3kckZQ8AADouMwHk0UeAGTD5wdA8XD94wjXP9quc/ym0KH06NEjFixYEGVlZWnjCxcujNGjR8fGjRsLVFn+bNy4MUaPHt3kza+srCwefvjhvL75yUMeSSOPZJFHsiQpDwAAAADS6V8lq38lj2TlAQAAAAAAtJ3rH65/5IoFiRSlyy+/PJ588skmb4IrV66M6urquO2222L79u0Fqq79bN++PW677baorq5u8rWwZWVl8eSTT8bll1+e97rkIY8kkEeyyCNZkpoHAAAAAOn0r5LVv5JHsvIAAAAAAADazvUP1z9yoSSVSqUKXQRk60c/+lFcd911cejQoePef/7558e4cePisssui4EDB0afPn3yXGHbvP3227F169Z4/vnnY+nSpfHyyy8f93Hvvvldc801ea4wnTyOkEd+yCNZ5JEsxZYHAEBb1dXVRa9evSIiYt++fdGzZ88CV9S5yQOAbPj8SKd/dURS+lfyOCIpeQAA0LGYDyaLPADIhs8PgOLk+scRrn9kx4JEit5zzz0XX/ziF2PHjh0tPva0006LgQMHxplnnhk9evSIioqK6NIlGV8U2tjYGPX19bF///744x//GFu3bo3du3e3+LzKysp4+OGHE7MSWx7yaA/ykEd7kEey8gAAaAsXuJJFHgBkw+dHU/pXyepfySNZeQAA0HGYDyaLPADIhs8PgOLl+ofrH9myIJEO4cCBAzFr1qyYPXt21NfXF7qcvKioqIhp06bFHXfcEd27dy90OWnkIY9Ck0eyyCNZkpwHAEC2XOBKFnkAkA2fH8enf5Ws/pU8kpUHAAAdg/lgssgDgGz4/AAobq5/uP6RDQsS6VC2b98ec+bMiaeeeir27NlT6HLaxWmnnRbXXntt3H777VFVVVXock5IHskij2SRR7LIAwCguLnAlSzyACAbPj9OTP8qWeQBAAC5Yz6YLPIAIBs+PwA6Btc/aA0LEumQDh06FC+++GIsXbo0li1bFjt27Ihi/VUvKSmJysrKuOKKK2LcuHExatSoKCsrK3RZrSKPZJFHssgjWeQBAFCcXOBKFnkAkA2fH5nRv0oWeQAAQNuZDyaLPADIhs8PgI7F9Q8yYUEinUJ9fX28+uqrsXXr1ti6dWu88cYb8c4778Q777xT6NLSdOvWLbp16xYnn3xyDBw4MAYOHBgf+tCHoqKiotCl5ZQ8kkUeySKPZGmvPBoaGmLhwoUREVFTUxPl5eVt2l9nyQMAoDkucCWLPADIhs+P7OgnJot+IgAAtJ75YLLIA4Bs+PwA6Nhcj+J4LEgEAMgzDRgAgNxyfpUs8gAgGz4/oHn+PgAA6Mic7yaLPADIhs8PAOh8uhS6AAAAAAAAAAAAAAAAAAAg+SxIBAAAAAAAAAAAAAAAAABaZEEiAAAAAAAAAAAAAAAAANAiCxIBAAAAAAAAAAAAAAAAgBZZkAgAAAAAAAAAAAAAAAAAtMiCRAAAAAAAAAAAAAAAAACgRRYkAgAAAAAAAAAAAAAAAAAtsiARAAAAAAAAAAAAAAAAAGiRBYkAAAAAAAAAAAAAAAAAQIssSAQAAAAAAAAAAAAAAAAAWmRBIgAAAAAAAAAAAAAAAADQIgsSAQAAAAAAAAAAAAAAAIAWWZAIAAAAAAAAAAAAAAAAALTIgkQAAAAAAAAAAAAAAAAAoEUWJAIAAAAAAAAAAAAAAAAALbIgEQAAAAAAAAAAAAAAAABokQWJAAAAAAAAAAAAAAAAAECLLEgEAAAAAAAAAAAAAAAAAFpkQSIAAAAAAAAAAAAAAAAA0KKyQhcA+VBfXx+vvPJKbN26NbZt2xavv/56vPPOO1FfX1/o0tJUVFREt27d4pRTTokBAwbEwIED46yzzoqKiopCl5ZT8kgWeQAAAEDhmZ8DAAAAABQn/V0AADoy57scjwWJdEiHDh2KF154IZYuXRrLli2LnTt3RiqVKnRZWSkpKYn+/fvHFVdcEePGjYtPfvKTUVZWXH+68kgWeQAAAEDhmZ8DAAAAABQn/V0AADoy57tkoiRVrL8VcBzbtm2Lb33rW/HUU0/Fnj17Cl1Ouzj11FNj7Nixcfvtt0dVVVWhyzkheSSLPCA56urqolevXhERsW/fvujZs2eBKwIAKG7Or5JFHidmfg5wfD4/oHn+PgAA6Mic7yaLPE5Mfxfg+Hx+AHQMzndpDQsS6RD2798fs2bNitmzZ8fBgwcLXU5eVFRUxFe/+tW44447okePHoUuJ4085FFoSc4DIjRgAAByzflVssjj+MzPzc+BE/P5Ac3z9wEAQEfmfDdZ5HF8+rv6u8CJ+fwAKG7Od53vZsOCRIrec889FzfddFPs3Lmzxcf27ds3BgwYEP369YsePXpE165do0uXLnmosmWNjY1x8ODB2L9/f/zhD3+Ibdu2xa5du1p8XmVlZTz88MNx+eWX56HKlslDHu2ho+QB79KAAQDILedXySKPpszPzc+Blvn8gOb5+wAAoCNzvpss8mhKf1d/F2iZzw+A4tXRznc3btwYf/rTn6KhocH5bjuzIJGi9qMf/Siuu+66OHTo0HHv/9jHPhbjxo2LSy+9NAYOHBh9+vTJc4Vt8/bbb8fWrVtj+fLl8eSTT8bLL7983MeVlZXFk08+Gddcc02eK0wnjyPkkR/Flge8lwYMAEBuOb9KFnmkMz8/wvwcaInPD2ievw8AADoy57vJIo90+rtH6O8CLfH5AVCcOtL5bmNjY9x5550xe/bs+OEPfxjXXHON8912ZkEiRau5N7/S0tKYPHlyTJ48Oc4666wCVdc+tm/fHt/+9rdj3rx5cfjw4bT7Cv0mKA95FFqS84BjacAAAOSW86tkkcf/Mj83Pwcy5/MDmufvAwCAjsz5brLI43/p7+rvApnz+QFQfDrS+e6BAwdi/Pjx8YMf/CAiIv70pz/F6aef3uRxzndzy4JEitJzzz0XV111VZM3v1GjRsX8+fNj8ODBBaosP37zm9/ELbfcEi+++GLaeFlZWfzkJz/J+9fFykMeSZK0POB4NGAAAHLL+VWyyOMI83Pzc6B1fH5A8/x9AADQkTnfTRZ5HKG/q78LtI7PD4Di0pHOd3ft2hVjxoyJX/3qVxERUVlZGa+++uoJn+N8Nze6FLoAaK39+/fHTTfd1OTNr6amJlasWFFUb37ZGjx4cKxYsSJqamrSxg8dOhRf/OIX48CBA3mrRR7ySJok5QEAAEDnZH5ufg4AAAAAFCf9Xf1dAICOrCOd727atCkuvPDCo4sRIyJGjBjR4vOc7+aGBYkUnVmzZsXOnTvTxmpqauKhhx6KLl06z690ly5d4qGHHmryJrhjx46YNWtW3uqQxxHySJak5AEAAEDnZH5+hPk5AAAAAFBs9HeP0N8FAOiYOsr57vLly2PkyJFNfpZMFiRGON/NhZJUKpUqdBGQqW3btsXgwYOjvr7+6NioUaNixYoVRfXml0uNjY0xevToWLly5dGxioqK2LRpU1RVVbXrseXRlDySpZB5wInU1dVFr169IiJi37590bNnzwJXBABQ3JxfJUtnz8P8vCnzcyATnf3zA07E3wcAAB2Z891k6ex56O82pb8LZKKzf34AFIuOcr67aNGiuPnmm5t8y2NExK9//esYNmxYxvtyvpu94vmNgYj41re+lfbmV1paGvPnzy+qN79c69KlS8yfPz9KS0uPjtXX18ecOXPa/djyaEoeyVLIPAAAAOiczM+bMj8HAAAAAIqB/m5T+rsAAB1HsZ/vNjY2xrRp06Kmpua4ixG7d+8eQ4YMadU+ne9mrzh+ayAiDh06FE899VTa2OTJk2Pw4MEFqig5zj333Jg8eXLa2A9/+MPjvsnmijyaJ49kKUQeAAAAdE7m580zPwcAAAAAkkx/t3n6uwAAxa/Yz3cPHDgQ1113XXzzm99s9jHDhg2L8vLyVu/b+W52LEikaLzwwguxZ8+etLFj/+g7s0mTJqXd3r17d7z44ovtdjx5nJg8kiXfeQAAANA5mZ+fmPk5AAAAAJBU+rsnpr8LAFDcivl8d9euXTF69OgmCyqPNWLEiKyP4Xy39SxIpGgsXbo07fbHPvaxOOusswpUTfJUVVXF+eefnzZ27GuWS/I4MXkkS77zAAAAoHMyPz8x83MAAAAAIKn0d09MfxcAoLgV6/nupk2b4sILL4xf/epXaeNdujRdDteWBYnOd1vPgkSKxrJly9Jujxs3rkCVJNexr8mxr1kuyaNl8kiWfOYBAABA52R+3jLzcwAAAAAgifR3W6a/CwBQvIrxfPf555+PkSNHxs6dO9PGTzrppJgzZ06Tx3/84x9v0/Gc77aOBYkUhfr6+iZvIpdeemmBqkmuyy67LO32zp07o76+PufHkUdm5JEs+coDAACAzsn8PDPm5wAAAABA0ujvZkZ/FwCgOBXj+e7ChQvjyiuvjLfffjttvLKyMv77v/87evTo0WT89NNPb9Mxne+2jgWJFIVXXnklUqlU2tjZZ59doGqSa+DAgWm3Gxsb49VXX835ceSRGXkkS77yAAAAoHMyP8+M+TkAAAAAkDT6u5nR3wUAKE7FdL7b2NgY06ZNi5tuuikOHz6cdt+FF14Yq1evjnPOOSdWrVqVdt+IESPafGznu61jQSJFYevWrWm3+/btG7179y5QNcnVp0+fOO2009LGjn3tckEemZFHsuQrDwAAADon8/PMmJ8DAAAAAEmjv5sZ/V0AgOJULOe7+/fvj+uuuy6++c1vHvf+xx9/PPr27RsR0S4LEp3vto4FiRSFbdu2pd0eMGBAgSpJvmNXZbfHG6A8MiePZMlHHgAAAHRO5ueZMz8HAAAAAJJEfzdz+rsAAMWnWM5333zzzThw4ECz95999tlx5ZVXxuuvvx6/+93v0u7LxYLECOe7rWFBIkXh9ddfT7vdr1+/AlWSfGeeeWba7TfeeCPnx5BH5uSRLPnIAwAAgM7J/Dxz5ucAAAAAQJLo72ZOfxcAoPgUy/numWeeGf/1X/8VzzzzTFRWVh73Mc8++2yceuqpaWPdu3ePIUOG5KyG93K+2zwLEikK77zzTtrtHj16FKiS5Dv2tTn2tcsFeWROHsmSjzwAAADonMzPM2d+DgAAAAAkif5u5vR3AQCKT5LPdw8fPhyHDx8+erukpCTGjBkTmzdvjpkzZ2a0j2HDhkV5eXlO6nG+m7myQhcAmaivr0+73bVr1wJVknwVFRVpt9vjDVAemZNHsuQjDwAAADon8/PMmZ8DAAAAAEmiv5s5/V0AgOJT6PPdgwcPxvr169O2TZs2xd69e6OhoSEiIsrLy6N3797x0Y9+NIYMGRJDhgyJD37wgxntf8SIETmr1flu5ixIpCh16eLLPZtTiNdGHs2TR7J4bQAAAMgXc9DmeW0AAAAAgCTTw2ye1wYAoPjl65xu3bp18cgjj8R//Md/xJtvvnnCxzY0NMSbb74ZK1eujJUrV7bqOLlckOh8N3MWJAIAAAAAAAAAAAAAAACQtUOHDsW///u/x0MPPRTr1q3L+f6vuuqqWL58edq3Pn784x/P+XFomQWJAAAAAAAAAAAAAAAAAGRl1apVcfPNN8f69evb7Rg/+clPYtCgQfH+978/Vq1aFZWVlXH66ae32/FongWJAAAAAAAAAAAAAAAAALTKG2+8EXfccUcsWrTohI87++yzY8iQIUe3M844IyoqKiIior6+Pl577bVYv359fP3rX0/7BsRj/fa3v42IiMsuuywGDx6cux+EVrEgEQAgzxoaGo777xRGQ0ND7N27NyIievfuHeXl5QWuCAAAAAD+l34iNE9/FwAAAACgcNatWxd/93d/F6+99tpx7+/Xr1/ceOON8fnPfz6qqqpOuK/q6uo4+eST46677sro2M8//3xs3rw5xo8fH0OHDm1t6bRRl0IXAADQGaxbty6mTJkSw4cPj759+x4d79u3bwwfPjymTJnSrl9RTrr35tGrV684+eST4+STT45evXrJAwAAAICC00+E5unvAgAAAAAU3rPPPhsXXXTRcRcjDh48OH7605/Gq6++Gvfcc0+LixEjIlKpVIwcObLJ+AMPPBA//elPj/ttiK+99lpcdNFF8eyzz2b3Q5A1CxIBANrRhg0bYtSoUVFdXR3z5s2LNWvWxMGDB4/ef/DgwVizZk3Mmzcvhg4dGqNGjYoNGzYUsOKOTR4AAAAAJJn+FTTP3wcAAAAAQDL8+Mc/jjFjxkRdXV3aeM+ePWPOnDnx8ssvx6c//ekoLS3NeJ8zZsw47vitt94an/70p+Pll1+OOXPmRM+ePdPur6uri6uvvjp+/OMft/4HIWsWJAIAtINUKhWzZs2KYcOGxcqVKzN+3sqVK2PYsGExa9asSKVS7Vhh5yIPAAAAAJJM/wqa5+8DAAAAACA5XnrppRg7dmw0NDSkjV988cWxZcuWmDp1apSXl7dqn3v37o3a2tom41u2bDn67+Xl5TF16tTYsmVLXHTRRWmPO3jwYIwdOzZeeumlVh2X7FmQCACQY6lUKiZPnhzTp09vcrKdiYaGhpg+fXpMnjzZfySRA/IAAAAAIMn0r6B5/j4AAAAAAJLjL3/5S9xwww1N+rXXX399PP/889GvX7+s9ltVVdVkrLq6OgYNGtRkvF+/frF8+fK4/vrr08YbGhrihhtuiL/+9a9Z1UDrdOgFia+99lo8+OCDcfnll8cHP/jB6Nq1a5x++ukxduzY+OUvf1no8kiwHTt2RElJSdpWXl4eZ5xxRlx33XWxZs2atMfv3bs3Kisro1u3brF58+bj7nP27NlRUlISX/jCF/LxI3Qo8kimTHN58MEHo6SkJCZMmNDsvn7+859Hly5dYvjw4XHo0KF8/QjQbmbPnh3z589v837mz58fs2fPzkFFnZs8AADoyMzPAaD46V9B8/x9AADQkenvAgBQTFKpVNTU1MTvf//7tPGJEyfG448/HhUVFVntd9WqVbFnz54m46tXr272ORUVFfH444/HxIkT08Z///vfR01Njf9BXR6UFbqA9jRv3ryYPXt2VFVVxeWXXx6nnnpqbN26NZ5++ul4+umn47vf/W78wz/8Q6HLJMGqqqric5/7XERE1NXVxdq1a2Pp0qXx9NNPx/Lly2PUqFEREdG7d+945JFH4tJLL43Pf/7zsWrVqigr+98/r40bN8bMmTOjf//+8cADDxTkZ+kI5JFMLeXyla98JZ555plYvHhxXHvttfH3f//3ac/ft29fTJgwISoqKuKxxx5LywqK0YYNG2LmzJk529/MmTPjM5/5TJx33nk522dnIg8AADoL83MAKE76V9A8fx8AAHQW+rsAABSDhQsXxlNPPZU2Nnr06FiwYEGUlpZmtc9UKhUjR45sMj537tzo2rXrCZ9bWloaCxYsiO3bt8cLL7xwdPwHP/hBLFq0KGpqarKqicx06G9IvOCCC+LnP/95bNu2LRYtWhS1tbXxgx/8IFasWBGlpaVx8803R319faHLJMEGDBgQd999d9x9991x3333xc9+9rOora2NhoaG+Jd/+Ze0x37qU5+KW265JdasWRP33nvv0fGGhoYYP358NDQ0xKOPPhq9e/fO94/RYcgjmVrKpaSkJBYvXhx9+vSJmpqaeOONN9KeP3Xq1NixY0fU1tbGRz7ykQL9FJA7kyZNavI15G3R0NAQkyZNytn+Oht5AADQWZifA0Bx0r+C5vn7AACgs9DfBQAg6fbv3x/Tp09PG/vABz4QTzzxRNaLESMiZsyYcdzxKVOmZPT80tLSeOKJJ+IDH/hA2vj06dNj//79WddFyzr0gsRrr702PvnJTzYZv/jii+OSSy6Jv/zlL7Fx48YCVEYx+6d/+qeIiFi7dm2T+2bPnh0DBgyIb3zjG7Fu3bqIiLjnnnti3bp1MXny5LjkkkvyWWqnII9kOjaX/v37x4MPPhi7du2Km2+++ejjli1bFgsWLIhLLrkkvvKVrxSkVsildevWxcqVK3O+35UrV8b69etzvt+OTh4AAHR25ucAkGz6V9A8fx8AAHR2+rsAACTJ4sWL480330wbe/TRR+OMM87Iep979+6N2traJuNbtmxp1X7OPPPMeOSRR9LG3njjjViyZEnWtdGyDr0g8UTKy8sjInw1PVk73u9Ojx49YvHixXH48OEYP358/OIXv4ja2tr48Ic/HLNmzSpAlZ2HPJLpvblMmDAhxowZE0uXLo3vfe978de//jW+8IUvRJ8+feLRRx+NkpKSAlYKuXHsyWyx7LujkgcAABxhfg4AyaR/Bc3z9wEAAEfo7wIAUGiHDx+O+++/P23syiuvjDFjxrRpv1VVVU3GqqurY9CgQa3e19VXXx1XXnll2tj9998fhw8fzro+TqxTLkj8/e9/H8uXL4+/+Zu/iXPPPbfQ5VBkFi1aFBERF1100XHv/8QnPhH//M//HBs3boxLL700IiKWLFkS3bt3z1uNnYk8kqm5XBYsWBCnnHJK3HLLLXHjjTfGH//4x3jwwQejf//+hSgTcm7VqlVFue+OSh4AAHR25ucAkGz6V9A8fx8AAHR2+rsAACTFM888E9u3b08bu/3229u0z1WrVsWePXuajK9evTrrfU6dOjXt9rZt2+I///M/s94fJ9bpvh6woaEh/u///b9RX18fs2fPjtLS0kKX1CqpVCr2799f6DLyrqGhoSDH3bZtW9x9990REVFXVxdr166NFStWRN++feO+++5r9nkzZ86M+fPnx4EDB2LSpElx4YUX5qniphoaGqKuri7n+ywEeTS/z0JqTS59+/aNhx9+OMaOHRvPPPNMjBkzJiZMmFCAqo9ojzzovBoaGmLDhg3ttv8NGzbEW2+95dudMyQPAOhc3nte7xy/8DprHubn2TM/ByI67+cHnZf+FTTP3wcAdC7mg8nSWfPQ382e/i4Q0Xk/PwCKRVvPd5988sm029XV1XHJJZdkvb9UKhUjR45sMj537tzo2rVr1vv91Kc+FUOHDo1169YdHfv+978f11xzTdb75ARSncjhw4dTN9xwQyoiUjU1NYUuJyv79u1LRUSn37785S+36+v86quvNnvs008/PbV169YTPn/mzJlHHz9gwIBUXV1du9b7Xl/+8pflcQx5tI+25HLBBRekIiK1efPmvNT6rkLkYbPZbDabzWaz2Wy2zrmZnzfP/Nxms9lsNpvNZrPZbDabzWazJXnT322e/q7NZrPZbDZb8W+tPd/t379/2vP/7d/+rU3nlNOnTz9uXbnwne98J22flZWVrXr+see7+ZobFKMu0Uk0NjbGxIkT47vf/W587nOfi4ceeqjQJVEErrjiikilUpFKpWL37t1x3333xe7du2PMmDGxb9++4z5n7dq1ce+998aHP/zhuP3222Pbtm0xffr0PFfeMckjmbLJpXv37mn/BAAAANrG/BwAAAAAoDjp7wIAkFR//vOfY+fOnWljF110Udb727t3b9TW1jYZ37JlS9b7fK9ja9uxY0fs2rUrJ/smXVmhC8iHxsbGmDBhQjz22GNx/fXXx+LFi6NLl+Jci9mjR49mJ5gd2W233RYLFy4saA2nnnpq3H777fHWW2/FN77xjbjrrrviwQcfTHtMfX19jB8/PlKpVCxZsiTOP//8eO6552LevHkxduzYGDVqVN7rrqmpiQceeCCn+5RH9jpqHu/KJJckaY886LwaGhqib9++cfDgwXbZf0VFRezatSvKyjrF6VubyQMAOpe6urro27dvRETs2rUrevbsWeCKOrfOmof5efbMz4GIzvv5QeelfwXN8/cBAJ2L+WCydNY89Hezp78LRHTezw+AYtGW891f/vKXabd79+4dH/nIR7KupaqqqslYdXV1DBo0KOt9vtc555wTvXr1Slt39ctf/jLGjBmTk/3zvzp8h/29ixH/4R/+IR5//PEoLS0tdFlZKykp6ZQnaeXl5YUu4ag777wzHnnkkfjOd74Tt956a1RWVh6976677orNmzfH9OnT48ILL4yIiCVLlsQFF1wQEydOjA0bNkSPHj3yWm95eXnOf2fkkb2Onse7TpRLkrRHHnRu5513XqxZs6bd9n3SSSe1y747KnkAQOfUs2dP5/kJ0pnyMD/Pnvk5cKzO9PlB56Z/Bc3z9wEAnZP5YLJ0pjz0d7OnvwscqzN9fgAUi7ac765fvz7t9vDhw7Nek7Vq1arYs2dPk/HVq1dntb/jKS0tjeHDh8eKFSuOjq1bt86CxHZQnF8TmKHGxsaYOHFiPPbYYzFu3Lh44okninoxIsnQvXv3mDZtWjQ0NMTXv/71o+MvvfRS3H///XHuuefG3XfffXR86NChMWPGjNi+fXtMmzatABV3bPJIpuZygY5uxIgRRbnvjkoeAAB0dubnAJBs+lfQPH8fAAB0dvq7AAAkwd69e9Nu9+vXL6v9pFKpGDlyZJPxuXPnRteuXbPaZ3OOrfG935ZI7nToBYn33HNPLFmyJHr16hVnn312fOMb34i77747bVu3bl2hy6QI3XTTTfG3f/u38dhjj8X27dujrq4ubrzxxigtLY0lS5Y0eUOcMWNGVFdXx/z58+OFF14oUNUdlzyS6dhcoDOYOHFiUe67o5IHAACYnwNAkulfQfP8fQDA/8fe/YdZWdf543/NMMPwUyt/4LXKMjlgZAhMYQYJUeuPzF38qB+8+vXRcMPNBNLgEgiXNWsDylQWaVVcRW23z0pWbtulKNeasAa14sWPgHYBhdJvi6ibwKDDwJzvH3yiDjPDnDmcOed9Zh6P67qvOO85575fc54z932/X+O7A6C/CwBA6Y0YMSI++clPxmWXXRYXXXRRnHPOOXntZ86cOa2OT5s27XjKa9Xw4cPjoosuissuuyw++clPxogRIwp+DCKqSl1AZ9qxY0dEHF7N+rd/+7etPqe2tjZGjhxZvKLoEnr16hWzZ8+OqVOnxle/+tXo379/bNu2Lb761a9GfX19i+dXVVXFQw89FKNGjYpJkybFxo0bfRx5AckjTUfn8vDDD5e6JOh0I0eOjLFjx8aqVasKut+xY8e6Gc6DPAAAwPwcAFKmfwVt8/sBAAD6uwAAlN5nP/vZ+OxnP3tc+9i7d2/MmzevxfiWLVuOa79tmT59ekyfPr1T9s0fdOkFiUuXLo2lS5eWugzKUG1tbWQymWM+Z8qUKTFlypQjjxcvXnzM559zzjnR2NhYkPq6G3mkKZ9cfu+nP/1pJ1UFpXf33XfHqFGjoqmpqSD7q66ubvecRtvkAQBAV2d+DgDlTf8K2ub3AwCArk5/FwCA7qCurq7FWH19fQwdOrQE1VAolaUuAACgKxk+fHjcdtttBdvfbbfdlvfHmyMPAAAAANKmfwVt8/sBAAAAAFDeVq9eHbt3724xvmbNmhJUQyFZkAgAUGAzZ86MG2644bj3M2XKlJg5c2YBKure5AEAAABAyvSvoG1+PwAAAAAAylMmk4kxY8a0GF+4cGH07NmzBBVRSBYkAgAUWEVFRSxatCjmzZsX1dXVHX59dXV1zJs3L/7u7/4uKioqOqHC7kUeAAAAAKRM/wra5vcDAAAAAKA8zZkzp9XxadOmFbkSOoMFiQAAnaCioiJmzZoVzz//fIwdOzbn140dOzbWrl0bs2bN8h9HFJA8AAAAAEiZ/hW0ze8HAAAAAEB52bt3b8ybN6/F+JYtW0pQDZ2hqtQFAAB0ZcOHD4+VK1fG+vXr44EHHojVq1fH+vXr48CBAxERUVNTE8OHD4/Ro0fHtddeGyNGjChxxV2bPAAAAABImf4VtM3vBwAAAABAeairq2sxVl9fH0OHDi1BNXQGCxIBAIpgxIgRsXDhwoiIOHjwYOzZsyciIk444YSoqnJLVmx/nMebb74Z73jHOyIiYteuXXHiiSeWsDIAAAAA0E+EY9HfBQAAAABI1+rVq2P37t0txtesWVOCaugs/loFAFBkVVVV8a53vavUZfD//PF/wOU/5gIAAAAgNfqJ0Db9XQAAAACAdGQymRgzZkyL8YULF0bPnj1LUBGdpbLUBQAAAAAAAAAAAAAAAABQvubMmdPq+LRp04pcCZ3NgkQAAAAAAAAAAAAAAAAA8rJ3796YN29ei/EtW7aUoBo6mwWJAAAAAAAAAAAAAAAAAOSlrq6uxVh9fX0MHTq0BNXQ2SxIpCw1NzeXuoRkleK9kUfb5JEW7w0AAADFYg7aNu8NAAAAAJAyPcy2eW8AAMpfZ9zT/epXv4rdu3e3GF+zZk3Bj9WZ3O/mzoJEykJNTU3W4wMHDpSokvQ1NjZmPe7Vq1fBjyGP3MkjLcXIAwAAgO7J/Dx35ucAAAAAQEr0d3OnvwsAUH46+343k8nEjTfe2GJ84cKF0bNnz4Ieq7O5382dBYmUhaN/iffv31+iStJ39HvTGSdAeeROHmkpRh4AAAB0T+bnuTM/BwAAAABSor+bO/1dAIDy09n3u6+++mr853/+Z9bYO9/5zpg2bVpBj1MM7ndzZ0EiZeHkk0/Oevyb3/ymRJWk7+WXX856fNJJJxX8GPLInTzSUow8AAAA6J7Mz3Nnfg4AAAAApER/N3f6uwAA5aez73cHDBgQmzdvjrlz50ZNTU307ds3NmzYUNBjFIv73dxZkEhZGDx4cNbjbdu2laiS9G3dujXr8ZAhQwp+DHnkTh5pKUYeAAAAdE/m57kzPwcAAAAAUqK/mzv9XQCA8lOM+93evXvHV7/61di0aVM8/PDDccYZZxT8GMXgfjd3FiRSFo7+Jd61a1fs2bOnRNWka8+ePfHqq69mjXXGCVAeuZFHWoqVBwAAAN2T+XluzM8BAAAAgNTo7+ZGfxcAoDwV8363rq4urrjiik7Zd2dzv9sxFiRSFs4888yoqKjIGjt65TEt35PKysp497vfXfDjyCM38khLsfIAAACgezI/z435OQAAAACQGv3d3OjvAgCUJ/e7uXG/2zEWJFIWampqYtCgQVljK1asKFE16Xr66aezHg8aNChqamoKfhx55EYeaSlWHgAAAHRP5ue5MT8HAAAAAFKjv5sb/V0AgPLkfjc37nc7xoJEysbFF1+c9XjZsmUlqiRdR78nR79nhSSP9skjLcXMAwAAgO7J/Lx95ucAAAAAQIr0d9unvwsAUL7c77bP/W7HWJBI2Zg4cWLW47Vr18aLL75YomrSs3379njhhReyxo5+zwpJHscmj7QUOw8AAAC6J/PzYzM/BwAAAABSpb97bPq7AADlzf3usbnf7TgLEikbH/nIR+KUU07JGlu0aFGJqknP3XffnfX41FNPjXHjxnXa8eRxbPJIS7HzAAAAoHsyPz8283MAAAAAIFX6u8emvwsAUN7c7x6b+92OsyCRslFVVRVXXnll1tiiRYvil7/8ZYkqSsfGjRtbXAyuuOKKqKqq6rRjyqNt8khLKfIAAACgezI/b5v5OQAAAACQMv3dtunvAgCUP/e7bXO/mx8LEikrM2bMiJqamiOPDx06FDfccEM0NzeXsKrSam5ujhtuuCEOHTp0ZKympiZmzJjR6ceWR0vySEsp8wAAAKB7Mj9vyfwcAAAAACgH+rst6e8CAHQd7ndbcr+bPwsSKSt1dXVx8803Z42tXLkyvvCFL3TLk2Bzc3N84QtfiFWrVmWNz5w5M+rq6jr9+PLIJo+0lDoPAAAAuifz82zm5wAAAABAudDfzaa/CwDQtbjfzeZ+9/hUZDKZTKmLgI7Yv39/nH322bFz586s8cmTJ8c999wTlZXdY53t709+S5YsyRqvra2NzZs3R+/evYtShzwOk0daUskDKA8NDQ3Rr1+/iIjYt29f9O3bt8QVAQAd5XqeFnmYn/+e+TnQEa4fAOTD9QMAyp/reVrkob/7e/q7QEe4fgCUD/e7h7nfPX7d4yeFLqVPnz5x3333RVVVVdb4kiVLYvz48bFx48YSVVY8GzdujPHjx7c4+VVVVcW9995b1JOfPOSRmpTyAAAAoHsyPzc/BwAAAADKk/6u/i4AQFfmftf9bqFYkEhZuuiii+LRRx9tcRJctWpV1NfXx0033RTbt28vUXWdZ/v27XHTTTdFfX19i4+FraqqikcffTQuuuiiotclD3mkINU8AAAA6J7Mz83PAQAAAIDypL+rvwsA0JW533W/WwgVmUwmU+oiIF8//OEP46qrroqDBw+2+vX3v//9MXHixLjwwgtjyJAhccIJJxS5wuOzZ8+e2Lp1azz99NOxbNmyeOGFF1p93u9PfpdffnmRK8wmj8PkURzllgeQroaGhujXr19EROzbty/69u1b4ooAgI5yPU+LPLKZnx9mfg60x/UDgHy4fgBA+XM9T4s8sunvHqa/C7TH9QOgPLnfPcz9bn4sSKTsPfXUU/FXf/VXsWPHjnafe+qpp8aQIUPijDPOiD59+kRNTU1UVqbxQaHNzc3R2NgY+/fvj5dffjm2bt0ar776aruvq62tjXvvvTeZldjykEdn6Cp5AGnSEAOA8ud6nhZ5tGR+bn4OtM/1A4B8uH4AQPlzPU+LPFrS39XfBdrn+gFQvtzvut/NlwWJdAlvvfVWzJ8/PxYsWBCNjY2lLqcoampqYubMmTFr1qzo3bt3qcvJIg95lFrKeQDp0RADgPLnep4WebTO/Nz8HDg21w8A8uH6AQDlz/U8LfJonf6u/i5wbK4fAOXN/a773XxYkEiXsn379rj99tvjsccei927d5e6nE5x6qmnxhVXXBEzZsyIurq6UpdzTPJIizwAWqchBgDlz/U8LfI4NvNzgNa5fgCQD9cPACh/rudpkcex6e8CtM71A6BrcL9LR1iQSJd08ODBWLlyZSxbtiyWL18eO3bsiHL9Ua+oqIja2tq4+OKLY+LEiTFu3LioqqoqdVkdIo+0yAMgm4YYAJQ/1/O0yCM35ucA2Vw/AMiH6wcAlD/X87TIIzf6uwDZXD8Auhb3u+TCgkS6hcbGxnjppZdi69atsXXr1nj99dfj7bffjrfffrvUpWXp1atX9OrVK0466aQYMmRIDBkyJN797ndHTU1NqUsrKHmkRR5Ad6chBgDlz/U8LfLIT2fNz5uammLJkiURETF58uSorq4+rv2ZnwOdxfUDgHy4fgBA+XM9T4s88qO/C3R3rh8AXZv1BrTGgkQAALo1DTEAKH+u52mRR1rkAZQL5ysA8uH6AQDlz/U8LfJIizyAcuF8BQDdT2WpCwAAAAAAAAAAAAAAAAAA0mdBIgAAAAAAAAAAAAAAAADQLgsSAQAAAAAAAAAAAAAAAIB2WZAIAAAAAAAAAAAAAAAAALTLgkQAAAAAAAAAAAAAAAAAoF0WJAIAAAAAAAAAAAAAAAAA7bIgEQAAAAAAAAAAAAAAAABolwWJAAAAAAAAAAAAAAAAAEC7LEgEAAAAAAAAAAAAAAAAANplQSIAAAAAAAAAAAAAAAAA0C4LEgEAAAAAAAAAAAAAAACAdlmQCAAAAAAAAAAAAAAAAAC0y4JEAAAAAAAAAAAAAAAAAKBdFiQCAAAAAAAAAAAAAAAAAO2yIBEAAAAAAAAAAAAAAAAAaJcFiQAAAAAAAAAAAAAAAABAuyxIBAAAAAAAAAAAAAAAAADaZUEiAAAAAAAAAAAAAAAAANAuCxIBAAAAAAAAAAAAAAAAgHZVlboAKIbGxsZ48cUXY+vWrbFt27Z47bXX4u23347GxsZSl5alpqYmevXqFSeffHIMHjw4hgwZEmeeeWbU1NSUurSCkkda5AEAQFfmfjctnZVHU1PTkX/fdNNNUV1dfVz76y55AAAAAEDK9HfTor8LAADQPZmf0xoLEumSDh48GM8++2wsW7Ysli9fHjt37oxMJlPqsvJSUVERgwYNiosvvjgmTpwYH/nIR6Kqqrx+deWRFnkAANCVud9NSynyWLJkSafstyvkAQAAAAAp099Ni/4uAABA92R+Ti4qMuX6UwGt2LZtW3z729+Oxx57LHbv3l3qcjrFKaecEldeeWXMmDEj6urqSl3OMckjLfIAaF1DQ0P069cvIiL27dsXffv2LXFFAOTD/W5a5NG9ub9KizyAcuF8BUA+XD8Augb9xLTIo3tzf5UWeQDlwvkKoGswH6QjLEikS9i/f3/Mnz8/FixYEAcOHCh1OUVRU1MTN998c8yaNSv69OlT6nKyyEMepZZyHkB6NMQAypv73bTud+WRVh6l4v4qLfIAyoXzFQD5cP0AKG/6iWn1E+WRVh6l4v4qLfIAyoXzFUB5Mx80H8yHBYmUvaeeeiquu+662LlzZ7vPHTBgQAwePDgGDhwYffr0iZ49e0ZlZWURqmxfc3NzHDhwIPbv3x+/+c1vYtu2bbFr1652X1dbWxv33ntvXHTRRUWosn3ykEdn6Cp5AGnSEAMoX+5307rflUdaeZSS+6u0yAMoF85XAOTD9QOgfOknptVPlEdaeZSS+6u0yAMoF85XAOWrq80HN27cGL/97W+jqanJfLCTWZBIWfvhD38YV111VRw8eLDVr3/gAx+IiRMnxgUXXBBDhgyJE044ocgVHp89e/bE1q1bY8WKFfHoo4/GCy+80Orzqqqq4tFHH43LL7+8yBVmk8dh8iiOcssDSJeGGEB5cr97WCr3u/I4LJU8Ss39VVrkAZQL5ysA8uH6AVCe9BMPS6WfKI/DUsmj1NxfpUUeQLlwvgIoT11pPtjc3Bxf+cpXYsGCBfGDH/wgLr/8cvPBTmZBImWrrZNfjx49YurUqTF16tQ488wzS1Rd59i+fXvcfffdsWjRojh06FDW10p9EpSHPEot5TyAtGmIAZQf97tp3e/KI608UuD+Ki3yAMqF8xUA+XD9ACg/+olp9RPlkVYeKXB/lRZ5AOXC+Qqg/HSl+eBbb70VV199dXz/+9+PiIjf/va3cdppp7V4nvlgYVmQSFl66qmn4tJLL21x8hs3blwsXrw4hg0bVqLKiuOXv/xl3HDDDbFy5cqs8aqqqvjJT35S9I+LlYc8UpJaHkD6NMQAyov73bTud+WRVh6pcH+VFnkA5cL5CoB8uH4AlBf9xLT6ifJIK49UuL9KizyAcuF8BVBeutJ8cNeuXTFhwoT4xS9+ERERtbW18dJLLx3zNeaDhWFBImVn//79cfbZZ8fOnTuzxidPnhz33HNPVFZWlqiy4mpubo4vfOELsWTJkqzx2tra2Lx5c/Tu3bsodcjjMHmkJZU8gPKgIQZQPtzvHpbK/a48Dkslj5S4v0qLPIBy4XwFQD5cPwDKh37iYan0E+VxWCp5pMT9VVrkAZQL5yuA8tGV5oObNm2KSy+9NOt7+dSnPhX/9E//1O5rzQePX/n8pMD/M3/+/C5x8jtelZWVcc8998TkyZOzxnfs2BHz588vWh3yOEweaUklDwAACsv97mGp3O/K47BU8gAAAACAlOknHpZKP1Eeh6WSBwAAQLF0lfngihUrYsyYMS2+l9GjR+f0evPB4+cTEikr27Zti2HDhkVjY+ORsXHjxsUzzzxTVie/Qmpubo7x48fHqlWrjozV1NTEpk2boq6urlOPLY+W5JGWUuYBlA//D10A5cH9bkvmH2kx//gD91dpkQdQLpyvAMiH6wdAedBPbEl/Ny36u3/g/iot8gDKhfMVQHnoKvPB+++/P66//vo4ePBgi6/9x3/8R4waNSrnfZkP5q98fmIgIr797W9nnfx69OgRixcvLquTX6FVVlbG4sWLo0ePHkfGGhsb4/bbb+/0Y8ujJXmkpZR5AABQWO53WzL/SIv5BwAAAAC0Tj+xJf3dtOjvAgAA3UG5zwebm5tj5syZMXny5FYXI/bu3TtGjBjRoX2aD+avPH5qICIOHjwYjz32WNbY1KlTY9iwYSWqKB3nnHNOTJ06NWvsBz/4Qasn2UKRR9vkkZZS5AEAQGG5322b+UdazD8AAAAAIJt+Ytv0d9OivwsAAHRl5T4ffOutt+Kqq66Kb37zm20+Z9SoUVFdXd3hfZsP5seCRMrGs88+G7t3784aO/qXvjubMmVK1uNXX301Vq5c2WnHk8exySMtxc4DAIDCcr97bOYfaTH/AAAAAIA/0E88Nv3dtOjvAgAAXVU5zwd37doV48ePb7Gg8mijR4/O+xjmgx1nQSJlY9myZVmPP/CBD8SZZ55ZomrSU1dXF+9///uzxo5+zwpJHscmj7QUOw8AAArL/e6xmX+kxfwDAAAAAP5AP/HY9HfTor8LAAB0VeU6H9y0aVOcd9558Ytf/CJrvLKy5XK441mQaD7YcRYkUjaWL1+e9XjixIklqiRdR78nR79nhSSP9skjLcXMAwCAwnK/2z7zj7SYfwAAAADAYfqJ7dPfTYv+LgAA0BWV43zw6aefjjFjxsTOnTuzxk888cS4/fbbWzz/Qx/60HEdz3ywYyxIpCw0Nja2OIlccMEFJaomXRdeeGHW4507d0ZjY2PBjyOP3MgjLcXKAwCAwnK/mxvzj7SYfwAAAACAfmKu9HfTor8LAAB0NeU4H1yyZElccsklsWfPnqzx2tra+NnPfhZ9+vRpMX7aaacd1zHNBzvGgkTKwosvvhiZTCZr7KyzzipRNekaMmRI1uPm5uZ46aWXCn4ceeRGHmkpVh4AABSW+93cmH+kxfwDAAAAAPQTc6W/mxb9XQAAoKspp/lgc3NzzJw5M6677ro4dOhQ1tfOO++8WLNmTZx99tmxevXqrK+NHj36uI9tPtgxFiRSFrZu3Zr1eMCAAdG/f/8SVZOuE044IU499dSssaPfu0KQR27kkZZi5QEAQGG5382N+UdazD8AAAAAQD8xV/q7adHfBQAAuppymQ/u378/rrrqqvjmN7/Z6tcfeeSRGDBgQEREpyxINB/sGAsSKQvbtm3Lejx48OASVZK+o1dld8YJUB65k0daipEHAACF5X43d+YfaTH/AAAAAKC700/Mnf5uWvR3AQCArqRc5oNvvPFGvPXWW21+/ayzzopLLrkkXnvttfiv//qvrK8VYkFihPlgR1iQSFl47bXXsh4PHDiwRJWk74wzzsh6/Prrrxf8GPLInTzSUow8AAAoLPe7uTP/SIv5BwAAAADdnX5i7vR306K/CwAAdCXlMh8844wz4l//9V/j8ccfj9ra2laf8+STT8Ypp5ySNda7d+8YMWJEwWr4Y+aDbbMgkbLw9ttvZz3u06dPiSpJ39HvzdHvXSHII3fySEsx8gAAoLDc7+bO/CMt5h8AAAAAdHf6ibnT302L/i4AANCVpDwfPHToUBw6dOjI44qKipgwYUJs3rw55s6dm9M+Ro0aFdXV1QWpx3wwd1WlLgBy0djYmPW4Z8+eJaokfTU1NVmPO+MEKI/cySMtxcgDAIDCcr+bO/OPtJh/AAAAANDd6SfmTn83Lfq7AABAV1Lq+eCBAwdi/fr1WdumTZti79690dTUFBER1dXV0b9//3jf+94XI0aMiBEjRsSf/umf5rT/0aNHF6xW88HcWZBIWaqs9OGebSnFeyOPtskjLd4bAIDy556ubeYfafHeAAAAAEA2PbO26e+mxXsDAAB0ZcWa86xbty4eeOCB+Md//Md44403jvncpqameOONN2LVqlWxatWqDh2nkAsSzQdzZ0EiAAAAAAAAAAAAAAAAAHk7ePBg/MM//EPcc889sW7duoLv/9JLL40VK1Zkferjhz70oYIfh/ZZkAgAAAAAAAAAAAAAAABAXlavXh3XX399rF+/vtOO8ZOf/CSGDh0a73znO2P16tVRW1sbp512Wqcdj7ZZkAgAAAAAAAAAAAAAAABAh7z++usxa9asuP/++4/5vLPOOitGjBhxZDv99NOjpqYmIiIaGxvjlVdeifXr18fXvva1rE9APNqvfvWriIi48MILY9iwYYX7RugQCxIBAAAAAACAI5qammLv3r0REdG/f/+orq4ucUUAAAAAAORCfxcopnXr1sWf//mfxyuvvNLq1wcOHBif+9zn4pprrom6urpj7qu+vj5OOumkuOWWW3I69tNPPx2bN2+Oq6++OkaOHNnR0jlOlaUuAAAAAAAAACitdevWxbRp0+Lcc8+Nfv36xUknnRQnnXRS9OvXL84999yYNm1arF+/vtRlAgAAAABwFP1doBSefPLJOP/881tdjDhs2LB44okn4qWXXorbbrut3cWIERGZTCbGjBnTYvzOO++MJ554otVPQ3zllVfi/PPPjyeffDK/b4K8WZAIAAAAAAAA3dSGDRti3LhxUV9fH4sWLYrnn38+Dhw4cOTrBw4ciOeffz4WLVoUI0eOjHHjxsWGDRtKWDEAAAAAABH6u0Dp/PjHP44JEyZEQ0ND1njfvn3j9ttvjxdeeCE+/vGPR48ePXLe55w5c1odv/HGG+PjH/94vPDCC3H77bdH3759s77e0NAQl112Wfz4xz/u+DdC3ixIBAAAAAAAgG4mk8nE/PnzY9SoUbFq1aqcX7dq1aoYNWpUzJ8/PzKZTCdWCAAAAABAa/R3gVJ67rnn4sorr4ympqas8bFjx8aWLVti+vTpUV1d3aF97t27N+bNm9difMuWLUf+XV1dHdOnT48tW7bE+eefn/W8AwcOxJVXXhnPPfdch45L/ixIBAAAAAAAgG4kk8nE1KlTY/bs2S3+WJyLpqammD17dkydOtV/tAIAAAAAUET6u0Ap/c///E98+tOfbnH++dSnPhVPP/10DBw4MK/91tXVtRirr6+PoUOHthgfOHBgrFixIj71qU9ljTc1NcWnP/3p+N3vfpdXDXRMl16Q+Pbbb8eXv/zlGDduXPzJn/xJ9OrVK0477bT48Ic/HA8++GBeF2C6hx07dkRFRUXWVl1dHaeffnpcddVV8fzzz2c9f+/evVFbWxu9evWKzZs3t7rPBQsWREVFRXz+858vxrfQpcgjTbnmctddd0VFRUVMmjSpzX399Kc/jcrKyjj33HPj4MGDxfoWAACgTe530yIPAIDCWrBgQSxevPi497N48eJYsGBBASoCAIDC0U9MizwAAApLfxcolUwmE5MnT45f//rXWePXXnttPPLII1FTU5PXflevXh27d+9uMb5mzZo2X1NTUxOPPPJIXHvttVnjv/71r2Py5MkWXBdBVakL6Ez79u2Lv//7v48PfvCDcemll8Ypp5wS//M//xNPPPFEXHvttfF//+//jSeeeCIqK7v0ukyOQ11dXXz2s5+NiIiGhoZYu3ZtLFu2LH70ox/FihUrYty4cRER0b9//3jggQfiggsuiGuuuSZWr14dVVV/+PXauHFjzJ07NwYNGhR33nlnSb6XrkAeaWovly996Uvx+OOPx9KlS+OKK66Iv/iLv8h6/b59+2LSpElRU1MTDz/8cFZWAABQau530yIPAIDjt2HDhpg7d27B9jd37tz4xCc+EcOHDy/YPgEAoBD0E9MiDwCA46e/C5TSkiVL4rHHHssaGz9+fNx3333Ro0ePvPaZyWRizJgxLcYXLlwYPXv2POZre/ToEffdd19s3749nn322SPj3//+9+P++++PyZMn51UTuenSs/J3vetd8eabb7b4ITx48GBceOGF8dRTT8UTTzwRl156aYkqJHWDBw+OW2+9NWts/vz5MXv27Pjrv/7rrJPWxz72sbjhhhvi7rvvjm984xtHbvaampri6quvjqampnjwwQejf//+xfwWuhR5pCmXXJYuXRrDhw+PyZMnx6ZNm+Kkk0468tzp06fHjh074s4774z3vve9Ra4eAACOzf1uWuQBAHD8pkyZEk1NTQXbX1NTU0yZMiVWrlxZsH0CAEAh6CemRR4AAMdPfxcolf3798fs2bOzxt71rnfFd7/73bwXI0ZEzJkzp9XxadOm5fT6Hj16xHe/+90YMWJEvPHGG0fGZ8+eHZ/5zGeiT58+edfGsXXpjwasrKxsdUVsVVVVXH755RERsW3btmKXRZn7y7/8y4iIWLt2bYuvLViwIAYPHhxf//rXY926dRERcdttt8W6deti6tSp8dGPfrSYpXYL8kjT0bkMGjQo7rrrrti1a1dcf/31R563fPnyuO++++KjH/1ofOlLXypJrQAA0FHud9MiDwCA3K1bty5WrVpV8P2uWrUq1q9fX/D9AgBAoeknpkUeAAC5098FSmnp0qVZC/4iIh588ME4/fTT897n3r17Y968eS3Gt2zZ0qH9nHHGGfHAAw9kjb3++uvx0EMP5V0b7evSCxLb0tzcHE8++WRERAwbNqzE1VCuqqpafsBonz59YunSpXHo0KG4+uqr49///d9j3rx58Z73vCfmz59fgiq7D3mk6Y9zmTRpUkyYMCGWLVsW3/ve9+J3v/tdfP7zn48TTjghHnzwwaioqChhpQAA0HHud9MiDwCA9h39x9hy2TcAABSafmJa5AEA0D79XaBUDh06FHfccUfW2CWXXBITJkw4rv3W1dW1GKuvr4+hQ4d2eF+XXXZZXHLJJVljd9xxRxw6dCjv+ji2brEg8cCBA3HrrbfG3/zN38SUKVPife97XzzxxBMxadKk+LM/+7NSl0eZuf/++yMi4vzzz2/16x/+8Ifjy1/+cmzcuDEuuOCCiIh46KGHonfv3kWrsTuRR5rayuW+++6Lk08+OW644Yb43Oc+Fy+//HLcddddMWjQoFKUCQAAeXG/mxZ5AADkbvXq1WW5bwAAKBT9xLTIAwAgd/q7QKk8/vjjsX379qyxGTNmHNc+V69eHbt3724xvmbNmrz3OX369KzH27Zti3/5l3/Je38cW8uPFOuCDhw4EF/96lePPK6oqIgZM2a0+tGeqctkMrF///5Sl1F0TU1NJTnutm3b4tZbb42IiIaGhli7dm0888wzMWDAgPjWt77V5uvmzp0bixcvjrfeeiumTJkS5513XpEqbqmpqSkaGhoKvs9SkEfb+yyljuQyYMCAuPfee+PKK6+Mxx9/PCZMmBCTJk0qQdWHdUYeQPn54/OAcwJAetzv5s/8o+vnkSr3V2mRB1AunK86X1NTU2zYsKHT9r9hw4Z48803sz7ZBKCzuX4ApE0/MX/6u10/j1S5v0qLPIBy4XzV+fR3geNxvPPBRx99NOtxfX19fPSjH817f5lMJsaMGdNifOHChdGzZ8+89/uxj30sRo4cGevWrTsy9s///M9x+eWX571PjiHTjRw6dCjzm9/8JvOd73wn8453vCPz4Q9/OPPmm2+WuqwO2bdvXyYiuv32xS9+sVPf55deeqnNY5922mmZrVu3HvP1c+fOPfL8wYMHZxoaGjq13j/2xS9+UR5HkUfnOJ5cPvjBD2YiIrN58+ai1Pp7pcjDZrPZbDabzVbYzf1u28w/Wted8rDZbDabzWaz2Ww2m81ms9lS3vQT26a/27rulIfNZrPZbDabzWazFWvr6Hxw0KBBWa//+7//++Oac82ePbvVugrhO9/5TtY+a2trO/T6o+eDxZo7l6PK6EYqKyvjjDPOiOuvvz7uu+++eO655+Jv//ZvS10WCbv44osjk8lEJpOJV199Nb71rW/Fq6++GhMmTIh9+/a1+pq1a9fGN77xjXjPe94TM2bMiG3btsXs2bOLXHnXJI805ZNL7969s/4XAABS5X43LfIAAAAAAHKln5gWeQAAAJSf//7v/46dO3dmjZ1//vl572/v3r0xb968FuNbtmzJe59/7OjaduzYEbt27SrIvsnWbT9T96KLLoqIiJ/+9KelLaSD+vTp02YDpiu76aabYsmSJSWt4ZRTTokZM2bEm2++GV//+tfjlltuibvuuivrOY2NjXH11VdHJpOJhx56KN7//vfHU089FYsWLYorr7wyxo0bV/S6J0+eHHfeeWdB9ymP/HXVPH4vl1xS0hl5AOWnoaEhBgwYEBERu3btir59+5a4IgD+mPvd/Jl/pKU7zT/cX6VFHkC5cL7qfE1NTTFgwIA4cOBAp+y/pqYmdu3aFVVV3fbPj0AJuH4ApE0/MX/6u2nR36VU5AGUC+erzqe/CxyP45kP/vznP8963L9//3jve9+bdy11dXUtxurr62Po0KF57/OPnX322dGvX7+sdVc///nPY8KECQXZP3/Qba8Y/9//9/9FRER1dXWJK+mYioqKbnmTllJOX/nKV+KBBx6I73znO3HjjTdGbW3tka/dcsstsXnz5pg9e3acd955ERHx0EMPxQc/+MG49tprY8OGDdGnT5+i1ltdXV3wnxl55K+r5/F7x8olJZ2RB1De+vbt67wAkBj3u/kz/0hLd51/uL9KizyAcuF81XmGDx8ezz//fKft+8QTT+yUfQPkwvUDID36ifnT302L/i4pkAdQLpyvOo/+LpCv45kPrl+/PuvxueeeGz169MhrX6tXr47du3e3GF+zZk1e+2tNjx494txzz41nnnnmyNi6dessSOwElaUuoDNt3rw59u/f32J8//798eUvfzkiIj7xiU8UuyzKXO/evWPmzJnR1NQUX/va146MP/fcc3HHHXfEOeecE7feeuuR8ZEjR8acOXNi+/btMXPmzBJU3LXJI01t5QIAAF2B+920yAMAIHejR48uy30DAECh6CemRR4AALnT3wVKYe/evVmPBw4cmNd+MplMjBkzpsX4woULo2fPnnntsy1H1/jHn5ZI4XTpBYmPPvponHbaafGJT3wivvjFL8asWbPi//yf/xN/+qd/Gk8++WSMHTs2brrpplKXSRm67rrr4k/+5E/i4Ycfju3bt0dDQ0N87nOfix49esRDDz3U4oQ4Z86cqK+vj8WLF8ezzz5boqq7Lnmk6ehcAACgK3G/mxZ5AADk5tprry3LfQMAQCHpJ6ZFHgAAudHfBUphxIgR8clPfjIuu+yyuOiii+Kcc87Jaz9z5sxpdXzatGnHU16rhg8fHhdddFFcdtll8clPfjJGjBhR8GPQxRck/vmf/3l88pOfjF//+tfxve99L7797W/HE088EcOHD4977703/u3f/i169+5d6jIpQ7169YrZs2fHwYMH46tf/WrcfPPNsW3btrjllluivr6+xfOrqqrioYceiurq6pg0aVI0NDSUoOquSx5pOjoXAADoStzvpkUeAAC5GTlyZIwdO7bg+x07dqw/5gIAUDb0E9MiDwCA3OjvAqXw2c9+Nr73ve/Fj370o1i+fHlMnz69w/vYu3dvzJs3r8X4li1bClFiC9OnT4/ly5fHj370o/je974Xn/nMZzrlON1dVakL6EyjRo2KUaNGlboMylBtbW1kMpljPmfKlCkxZcqUI48XL158zOefc8450djYWJD6uht5pCmfXH7vpz/9aSdVBQAAheF+Ny3yAAAonLvvvjtGjRoVTU1NBdlfdXV1uz15AAAoJv3EtMgDAKBw9HeBclRXV9dirL6+PoYOHVqCaiiULv0JiQAAAAAAAMAfDB8+PG677baC7e+2226Lc845p2D7AwAAAACgdfq7QLlZvXp17N69u8X4mjVrSlANhWRBIgAAAAAAAHQjM2fOjBtuuOG49zNlypSYOXNmASoCAAAAACAX+rtAuchkMjFmzJgW4wsXLoyePXuWoCIKyYJEAAAAAAAA6EYqKipi0aJFMW/evKiuru7w66urq2PevHnxd3/3d1FRUdEJFQIAAAAA0Br9XaBczJkzp9XxadOmFbkSOoMFiQAAAAAAANDNVFRUxKxZs+L555+PsWPH5vy6sWPHxtq1a2PWrFn+YxUAAAAAgBLQ3wVSt3fv3pg3b16L8S1btpSgGjpDVakLAAAAAAAAAEpj+PDhsXLlyli/fn088MADsXr16li/fn0cOHAgIiJqampi+PDhMXr06Lj22mtjxIgRJa4YAAAAAIAI/V0gXXV1dS3G6uvrY+jQoSWohs5gQSIAAAAAAAB0cyNGjIiFCxdGRMSbb74Z73jHOyIiYteuXXHiiSeWsDIAAAAAAI5FfxdIyerVq2P37t0txtesWVOCaugslaUuAAAAAAAAAEhHVVVVq/8GAAAAACBt+rtAKWUymRgzZkyL8YULF0bPnj1LUBGdxYJEAAAAAAAAAAAAAAAAAPI2Z86cVsenTZtW5ErobBYkAgAAAAAAAAAAAAAAAJCXvXv3xrx581qMb9mypQTV0NksSAQAAAAAAAAAAAAAAAAgL3V1dS3G6uvrY+jQoSWohs5mQSJlqbm5udQlJKsU74082iaPtHhvAADKn3u6tpl/pMV7AwAAAADZ9Mzapr+bFu8NAADQlXXGnOdXv/pV7N69u8X4mjVrCn6szmQ+mDsLEikLNTU1WY8PHDhQokrS19jYmPW4V69eBT+GPHInj7QUIw8AAArL/W7uzD/SYv4BAAAAQHenn5g7/d206O8CAABdSWfPBzOZTNx4440txhcuXBg9e/Ys6LE6m/lg7ixIpCwc/Uu8f//+ElWSvqPfm844Acojd/JISzHyAACgsNzv5s78Iy3mHwAAAAB0d/qJudPfTYv+LgAA0JV09nzw1Vdfjf/8z//MGnvnO98Z06ZNK+hxisF8MHcWJFIWTj755KzHv/nNb0pUSfpefvnlrMcnnXRSwY8hj9zJIy3FyAMAgMJyv5s784+0mH8AAAAA0N3pJ+ZOfzct+rsAAEBX0tnzwQEDBsTmzZtj7ty5UVNTE3379o0NGzYU9BjFYj6YOwsSKQuDBw/Oerxt27YSVZK+rVu3Zj0eMmRIwY8hj9zJIy3FyAMAgMJyv5s784+0mH8AAAAA0N3pJ+ZOfzct+rsAAEBXUoz5YO/eveOrX/1qbNq0KR5++OE444wzCn6MYjAfzJ0FiZSFo3+Jd+3aFXv27ClRNenas2dPvPrqq1ljnXEClEdu5JGWYuUBAEBhud/NjflHWsw/AAAAAEA/MVf6u2nR3wUAALqaYs4H6+rq4oorruiUfXc288GOsSCRsnDmmWdGRUVF1tjRK49p+Z5UVlbGu9/97oIfRx65kUdaipUHAACF5X43N+YfaTH/AAAAAAD9xFzp76ZFfxcAAOhqzAdzYz7YMRYkUhZqampi0KBBWWMrVqwoUTXpevrpp7MeDxo0KGpqagp+HHnkRh5pKVYeAAAUlvvd3Jh/pMX8AwAAAAD0E3Olv5sW/V0AAKCrMR/Mjflgx1iQSNm4+OKLsx4vW7asRJWk6+j35Oj3rJDk0T55pKWYeQAAUFjud9tn/pEW8w8AAAAAOEw/sX36u2nR3wUAALoi88H2mQ92jAWJlI2JEydmPV67dm28+OKLJaomPdu3b48XXngha+zo96yQ5HFs8khLsfMAAKCw3O8em/lHWsw/AAAAAOAP9BOPTX83Lfq7AABAV2U+eGzmgx1nQSJl4yMf+UiccsopWWOLFi0qUTXpufvuu7Men3rqqTFu3LhOO548jk0eaSl2HgAAFJb73WMz/0iL+QcAAAAA/IF+4rHp76ZFfxcAAOiqzAePzXyw4yxIpGxUVVXFlVdemTW2aNGi+OUvf1miitKxcePGFheDK664IqqqqjrtmPJomzzSUoo8AAAoLPe7bTP/SIv5BwAAAABk009sm/5uWvR3AQCArsx8sG3mg/mxIJGyMmPGjKipqTny+NChQ3HDDTdEc3NzCasqrebm5rjhhhvi0KFDR8ZqampixowZnX5sebQkj7SUMg8AAArL/W5L5h9pMf8AAAAAgNbpJ7akv5sW/V0AAKA7MB9syXwwfxYkUlbq6uri5ptvzhpbuXJlfOELX+iWJ8Hm5ub4whe+EKtWrcoanzlzZtTV1XX68eWRTR5pKXUeAAAUlvvdbKW+35VHtlLnAQAAAAAp00/MVup+ojyylToPAACAYjEfzGY+eHwqMplMptRFQEfs378/zj777Ni5c2fW+OTJk+Oee+6Jysrusc729ye/JUuWZI3X1tbG5s2bo3fv3kWpQx6HySMtqeQBlIeGhobo169fRETs27cv+vbtW+KKAGiL+93DUrnflcdhqeSREvdXaZEHUC6cr9IiD6BcOF8BlA/9xMNS6SfK47BU8kiJ+6u0yAMoF85XaZEHcCzmg4eZDx6/7vGTQpfSp0+fuO+++6KqqiprfMmSJTF+/PjYuHFjiSorno0bN8b48eNbnPyqqqri3nvvLerJTx7ySE1KeQAAUFjud9O635VHWnkAAAAAQMr0E9PqJ8ojrTwAAACKxXzQfLBQLEikLF100UXx6KOPtjgJrlq1Kurr6+Omm26K7du3l6i6zrN9+/a46aabor6+vsXHwlZVVcWjjz4aF110UdHrkoc8UpBqHgAAFJb73bTud+WRVh4AAAAAkDL9xLT6ifJIKw8AAIBiMR80HyyEikwmkyl1EZCvH/7wh3HVVVfFwYMHW/36+9///pg4cWJceOGFMWTIkDjhhBOKXOHx2bNnT2zdujWefvrpWLZsWbzwwgutPu/3J7/LL7+8yBVmk8dh8iiOcssDSFdDQ0P069cvIiL27dsXffv2LXFFAOTC/e5hqdzvyuOwVPIoNfdXaZEHUC6cr9IiD6BcOF8BlCf9xMNS6SfK47BU8ig191dpkQdQLpyv0iIPIFfmg4eZD+bHgkTK3lNPPRV/9Vd/FTt27Gj3uaeeemoMGTIkzjjjjOjTp0/U1NREZWUaHxTa3NwcjY2NsX///nj55Zdj69at8eqrr7b7utra2rj33nuTWYktD3l0hq6SB5AmDRiA8uV+N637XXmklUcpub9KizyAcuF8lRZ5AOXC+QqgfOknptVPlEdaeZSS+6u0yAMoF85XaZEH0BHmg+aD+bIgkS7hrbfeivnz58eCBQuisbGx1OUURU1NTcycOTNmzZoVvXv3LnU5WeQhj1JLOQ8gPRowAOXN/W5a97vySCuPUnF/lRZ5AOXC+Sot8gDKhfMVQHnTT0yrnyiPtPIoFfdXaZEHUC6cr9IiD6CjzAfNB/NhQSJdyvbt2+P222+Pxx57LHbv3l3qcjrFqaeeGldccUXMmDEj6urqSl3OMckjLfIAaJ0GDEDX4H43LfLo3txfpUUeQLlwvkqLPIBy4XwF0DXoJ6ZFHt2b+6u0yAMoF85XaZEHkC/zQTrCgkS6pIMHD8bKlStj2bJlsXz58tixY0eU6496RUVF1NbWxsUXXxwTJ06McePGRVVVVanL6hB5pEUeANk0YAC6Fve7aZFH9+T+Ki3yAMqF81Va5AGUC+crgK5FPzEt8uie3F+lRR5AuXC+Sos8gONlPkguLEikW2hsbIyXXnoptm7dGlu3bo3XX3893n777Xj77bdLXVqWXr16Ra9eveKkk06KIUOGxJAhQ+Ld73531NTUlLq0gpJHWuQBdHcaMABdW2fd7zY1NcWSJUsiImLy5MlRXV19XPvrLve75h/dg/urtMgDKBfOV2mRB1AunK8Aujb93bTo73YP7q/SIg+gXDhfpUUeQKGZD9IaCxIBAOjWNGAAyIfrB7TN70da5AGUC+ertMgDKBfOVwDkw/UD2ub3Iy3yAMqF81Va5AFAMVSWugAAAAAAAAAAAAAAAAAAIH0WJAIAAAAAAAAAAAAAAAAA7bIgEQAAAAAAAAAAAAAAAABolwWJAAAAAAAAAAAAAAAAAEC7LEgEAAAAAAAAAAAAAAAAANplQSIAAAAAAAAAAAAAAAAA0C4LEgEAAAAAAAAAAAAAAACAdlmQCAAAAAAAAAAAAAAAAAC0y4JEAAAAAAAAAAAAAAAAAKBdFiQCAAAAAAAAAAAAAAAAAO2yIBEAAAAAAAAAAAAAAAAAaJcFiQAAAAAAAAAAAAAAAABAuyxIBAAAAAAAAAAAAAAAAADaZUEiAAAAAAAAAAAAAAAAANAuCxIBAAAAAAAAAAAAAAAAgHZZkAgAAAAAAAAAAAAAAAAAtMuCRAAAAAAAAAAAAAAAAACgXRYkAgAAAAAAAAAAAAAAAADtsiARAAAAAAAAAAAAAAAAAGhXVakLgGJobGyMF198MbZu3Rrbtm2L1157Ld5+++1obGwsdWlZampqolevXnHyySfH4MGDY8iQIXHmmWdGTU1NqUsrKHmkRR4AAAAAQK46q5/Y1NR05N833XRTVFdXH9f+uks/UR5p0W9PizwAAAAAsuknpkUeadFPTIs80iIPWlORyWQypS4CCu3gwYPx7LPPxrJly2L58uWxc+fOKNcf9YqKihg0aFBcfPHFMXHixPjIRz4SVVXltZZYHmmRB0C2hoaG6NevX0RE7Nu3L/r27VviigAoB64f0Da/H2mRB3C89BPTIo+0yCMt8uie3O8CkA/XD2ib34+0yAM4XvolaZFHWuSRFnmkRR7kwoJEupRt27bFt7/97Xjsscdi9+7dpS6nU5xyyilx5ZVXxowZM6Kurq7U5RyTPNIiD4DWaeADkA/XD2ib34+0yAPIl35iWuSRFnmkRR7dm/tdAPLh+gFt8/uRFnkA+dIvSYs80iKPtMgjLfKgIyxIpEvYv39/zJ8/PxYsWBAHDhwodTlFUVNTEzfffHPMmjUr+vTpU+pysshDHqWWch5AejTwAciH6we0ze9HWuQBdJR+Ylr9RHnIo9TkkZaU8ygV97sA5MP1A9rm9yMt8gA6Sr8krX6JPORRavJIizzSknIe5cKCRMreU089Fdddd13s3Lmz3ecOGDAgBg8eHAMHDow+ffpEz549o7KysghVtq+5uTkOHDgQ+/fvj9/85jexbdu22LVrV7uvq62tjXvvvTcuuuiiIlTZPnnIozN0lTyANGngA5AP1w9om9+PtMgD6Aj9xLT6ifKQR2eQhzy6Gve7AOTD9QPa5vcjLfIAOkK/JK1+iTzk0RnkIY/O0NXy2LhxY/z2t7+NpqamssyjnFiQSFn74Q9/GFdddVUcPHiw1a9/4AMfiIkTJ8YFF1wQQ4YMiRNOOKHIFR6fPXv2xNatW2PFihXx6KOPxgsvvNDq86qqquLRRx+Nyy+/vMgVZpPHYfIojnLLA0iXBj4A+XD9gLb5/UiLPIBc6Scelko/UR6HyaM45JGWcsuj1NzvApAP1w9om9+PtMgDyJV+yWGp9EvkcZg8ikMeaZFH6TQ3N8dXvvKVWLBgQfzgBz+Iyy+/vOzyKDsZKFM/+MEPMlVVVZmIyNp69OiRufHGGzPbt28vdYkFt23btsyNN96Y6dGjR4vvu6qqKvODH/ygZLXJQx6llnIeQNr27dt35Hyxb9++UpcDQJlw/YC2+f1IizyAXOgnptVPlIc8Sk0eaUk5jxS43wUgH64f0Da/H2mRB5AL/ZK0+iXykEepySMt8iiO/fv3Z/73//7fR76H3/72t60+L+U8ypEFiZSl5cuXt3ryGzduXGbjxo2lLq/Tbdy4MTNu3LhWT4LLly8vej3ykEdKUssDSJ8GPgD5cP2Atvn9SIs8gPboJ6bVT5SHPFIij7Sklkcq3O8CkA/XD2ib34+0yANoj35JWv0SecgjJfJIizw6z3//939nPvjBDx75Hmpra9t9TWp5lKuKTCaTCSgj+/fvj7PPPjt27tyZNT558uS45557orKyskSVFVdzc3N84QtfiCVLlmSN19bWxubNm6N3795FqUMeh8kjLankAZSHhoaG6NevX0RE7Nu3L/r27VviigAoB64f0Da/H2mRB3As+omHpdJPlMdh8kiLPNKSSh4pcb8LQD5cP6Btfj/SIg/gWPRLDkulXyKPw+SRFnmkRR6Ft2nTprj00kuzvpdPfepT8U//9E/tvjaVPMpZ+fykwP8zf/78LnHyO16VlZVxzz33xOTJk7PGd+zYEfPnzy9aHfI4TB5pSSUPAAAAAEiZfuJhqfQT5XGYPNIij7SkkgcAAABQevolh6XSL5HHYfJIizzSIo/CWrFiRYwZM6bF9zJ69OicXp9KHuXMJyRSVrZt2xbDhg2LxsbGI2Pjxo2LZ555pqxOfoXU3Nwc48ePj1WrVh0Zq6mpiU2bNkVdXV2nHlseLckjLaXMAygf/h8FAciH6we0ze9HWuQBtEU/sSX93bTIIy3ySIu/f/yB+10A8uH6AW3z+5EWeQBt0S9pSf8qLfJIizzSIo/jd//998f1118fBw8ebPG1//iP/4hRo0blvC/99vyVz08MRMS3v/3trJNfjx49YvHixWV18iu0ysrKWLx4cfTo0ePIWGNjY9x+++2dfmx5tCSPtJQyDwAAAABImX5iS/q7aZFHWuSRFn//AAAAgO5Nv6Ql/au0yCMt8kiLPPLX3NwcM2fOjMmTJ7e6GLF3794xYsSIDu1Tvz1/5fFTAxFx8ODBeOyxx7LGpk6dGsOGDStRRek455xzYurUqVljP/jBD1o9yRaKPNomj7SUIg8AAAAASJl+Ytv0d9Mij7TIIy3+/gEAAADdk35J2/Sv0iKPtMgjLfLouLfeeiuuuuqq+OY3v9nmc0aNGhXV1dUd3rd+e34sSKRsPPvss7F79+6ssaN/6buzKVOmZD1+9dVXY+XKlZ12PHkcmzzSUuw8AAAAACBl+onHpr+bFnmkRR5p8fcPAAAA6H70S45N/yot8kiLPNIij9zt2rUrxo8f32JB5dFGjx6d9zH02zvOgkTKxrJly7Ief+ADH4gzzzyzRNWkp66uLt7//vdnjR39nhWSPI5NHmkpdh4AAAAAkDL9xGPT302LPNIij7T4+wcAAAB0P/olx6Z/lRZ5pEUeaZFHbjZt2hTnnXde/OIXv8gar6xsuRzueBYk6rd3nAWJlI3ly5dnPZ44cWKJKknX0e/J0e9ZIcmjffJISzHzAAAAAICU6Se2T383LfJIizzS4u8fAAAA0L3ol7RP/yot8kiLPNIij2N7+umnY8yYMbFz586s8RNPPDFuv/32Fs//0Ic+dFzH02/vGAsSKQuNjY0tTiIXXHBBiapJ14UXXpj1eOfOndHY2Fjw48gjN/JIS7HyAAAAAICU6SfmRn83LfJIizzS4u8fAAAA0H3ol+RG/yot8kiLPNIij7YtWbIkLrnkktizZ0/WeG1tbfzsZz+LPn36tBg/7bTTjuuY+u0dY0EiZeHFF1+MTCaTNXbWWWeVqJp0DRkyJOtxc3NzvPTSSwU/jjxyI4+0FCsPAAAAAEiZfmJu9HfTIo+0yCMt/v4BAAAA3Yd+SW70r9Iij7TIIy3yaKm5uTlmzpwZ1113XRw6dCjra+edd16sWbMmzj777Fi9enXW10aPHn3cx9Zv7xgLEikLW7duzXo8YMCA6N+/f4mqSdcJJ5wQp556atbY0e9dIcgjN/JIS7HyAAAAAICU6SfmRn83LfJIizzS4u8fAAAA0H3ol+RG/yot8kiLPNIij2z79++Pq666Kr75zW+2+vVHHnkkBgwYEBHRKQsS9ds7xoJEysK2bduyHg8ePLhElaTv6FXZnXEClEfu5JGWYuQBAAAAACnTT8yd/m5a5JEWeaTF3z8AAACge9AvyZ3+VVrkkRZ5pEUef/DGG2/EW2+91ebXzzrrrLjkkkvitddei//6r//K+lohFiRG6Ld3hAWJlIXXXnst6/HAgQNLVEn6zjjjjKzHr7/+esGPIY/cySMtxcgDAAAAAFKmn5g7/d20yCMt8kiLv38AAABA96Bfkjv9q7TIIy3ySIs8/uCMM86If/3Xf43HH388amtrW33Ok08+GaecckrWWO/evWPEiBEFq+GP6be3zYJEysLbb7+d9bhPnz4lqiR9R783R793hSCP3MkjLcXIAwAAAABSpp+YO/3dtMgjLfJIi79/AAAAQPegX5I7/au0yCMt8khLd8/j0KFDcejQoSOPKyoqYsKECbF58+aYO3duTvsYNWpUVFdXF6Qe/fbcVZW6AMhFY2Nj1uOePXuWqJL01dTUZD3ujBOgPHInj7QUIw8AAAAASJl+Yu70d9Mij7TIIy3+/gEAAADdg35J7vSv0iKPtMgjLd0hjwMHDsT69euztk2bNsXevXujqakpIiKqq6ujf//+8b73vS9GjBgRI0aMiD/90z/Naf+jR48uWK367bmzIJGyVFnpwz3bUor3Rh5tk0davDcAAAAAkE3PrG36u2mRR1rkkRbvDQAAAHRPegJt079KizzSIo+0dOU81q1bFw888ED84z/+Y7zxxhvHfG5TU1O88cYbsWrVqli1alWHjlPIBYl+VnNnQSIAAAAAAAAAAAAAAAAAeTt48GD8wz/8Q9xzzz2xbt26gu//0ksvjRUrVmR96uOHPvShgh+H9lmQCAAAAAAAAAAAAAAAAEBeVq9eHddff32sX7++047xk5/8JIYOHRrvfOc7Y/Xq1VFbWxunnXZapx2PtlmQCAAAAAAAAAAAAAAAAECHvP766zFr1qy4//77j/m8s846K0aMGHFkO/3006OmpiYiIhobG+OVV16J9evXx9e+9rWsT0A82q9+9auIiLjwwgtj2LBhhftG6BALEgEAAACAgmlqamr135SGPNLS1NQUe/fujYiI/v37R3V1dYkr6t7kAQAAAJBNPzEt8kiLfmJa5AEAaVi3bl38+Z//ebzyyiutfn3gwIHxuc99Lq655pqoq6s75r7q6+vjpJNOiltuuSWnYz/99NOxefPmuPrqq2PkyJEdLZ3jVFnqAgAAAACA8rZu3bqYNm1anHvuuTFgwIAj4wMGDIhzzz03pk2bFuvXry9hhd2LPNLyx3n069cvTjrppDjppJOiX79+8igBeQAAAABk009MizzSop+YFnkAQFqefPLJOP/881tdjDhs2LB44okn4qWXXorbbrut3cWIERGZTCbGjBnTYvzOO++MJ554otVPQ3zllVfi/PPPjyeffDK/b4K8WZAIAAAAAORlw4YNMW7cuKivr49FixbF888/HwcOHDjy9QMHDsTzzz8fixYtipEjR8a4ceNiw4YNJay4a5NHWuSRFnkAAAAAZNMvSYs80iKPtMgDANLz4x//OCZMmBANDQ1Z43379o3bb789Xnjhhfj4xz8ePXr0yHmfc+bMaXX8xhtvjI9//OPxwgsvxO233x59+/bN+npDQ0Ncdtll8eMf/7jj3wh5syARAAAAAOiQTCYT8+fPj1GjRsWqVatyft2qVati1KhRMX/+/MhkMp1YYfcij7TIIy3yAAAAAMimX5IWeaRFHmmRBwCk6bnnnosrr7wympqassbHjh0bW7ZsienTp0d1dXWH9rl3796YN29ei/EtW7Yc+Xd1dXVMnz49tmzZEueff37W8w4cOBBXXnllPPfccx06LvmzIBEAAAAAyFkmk4mpU6fG7NmzWzSXc9HU1BSzZ8+OqVOn+iNwAcgjLfJIizwAAAAAsumXpEUeaZFHWuQBAGn6n//5n/j0pz/d4vr8qU99Kp5++ukYOHBgXvutq6trMVZfXx9Dhw5tMT5w4MBYsWJFfOpTn8oab2pqik9/+tPxu9/9Lq8a6JhuuSBxwYIFUVFRERUVFbFmzZpSl0OCduzYceRn5PdbdXV1nH766XHVVVfF888/n/X8vXv3Rm1tbfTq1Ss2b97c6j5//3P3+c9/vhjfQpcijzTlmstdd90VFRUVMWnSpDb39dOf/jQqKyvj3HPPjYMHDxbrWwAAACAPCxYsiMWLFx/3fhYvXhwLFiwoQEXdmzzSIo+0yCMt+olpkUda5JEWeQAA0JXpl6RFHmmRR1rkkRb9krTIIy3ySIs8Olcmk4nJkyfHr3/966zxa6+9Nh555JGoqanJa7+rV6+O3bt3txg/1nqvmpqaeOSRR+Laa6/NGv/1r38dkydP9n9IUARVpS6g2H75y1/G3/zN30Tfvn2joaGh1OWQuLq6uvjsZz8bERENDQ2xdu3aWLZsWfzoRz+KFStWxLhx4yIion///vHAAw/EBRdcENdcc02sXr06qqr+8Ou1cePGmDt3bgwaNCjuvPPOknwvXYE80tReLl/60pfi8ccfj6VLl8YVV1wRf/EXf5H1+n379sWkSZOipqYmHn744aysAAAASMuGDRti7ty5Bdvf3Llz4xOf+EQMHz68YPvsTuSRFnmkRR7p0k9MizzSIo+0yAMAgK5GvyQt8kiLPNIij3Tpl6RFHmmRR1rk0TmWLFkSjz32WNbY+PHj47777osePXrktc9MJhNjxoxpMb5w4cLo2bPnMV/bo0ePuO+++2L79u3x7LPPHhn//ve/H/fff39Mnjw5r5rITbf6hMSmpqa45pprYuTIkXH55ZeXuhzKwODBg+PWW2+NW2+9Nb71rW/Fv/3bv8W8efOiqakp/vqv/zrruR/72MfihhtuiOeffz6+8Y1vHBlvamqKq6++OpqamuLBBx+M/v37F/vb6DLkkab2cqmoqIilS5fGCSecEJMnT47XX3896/XTp0+PHTt2xLx58+K9731vib4LAAAAcjFlypRoamoq2P6amppiypQpBdtfdyOPtMgjLfJIl35iWuSRFnmkRR4AAHQ1+iVpkUda5JEWeaRLvyQt8kiLPNIij8Lbv39/zJ49O2vsXe96V3z3u9/NezFiRMScOXNaHZ82bVpOr+/Ro0d897vfjXe9611Z47Nnz479+/fnXRft61YLEv/2b/82Nm3aFA888MBx/cDTvf3lX/5lRESsXbu2xdcWLFgQgwcPjq9//euxbt26iIi47bbbYt26dTF16tT46Ec/WsxSuwV5pOnoXAYNGhR33XVX7Nq1K66//vojz1u+fHncd9998dGPfjS+9KUvlaRWAAAAcrNu3bpYtWpVwfe7atWqWL9+fcH329XJIy3ySIs8yo9+YlrkkRZ5pEUeAACUK/2StMgjLfJIizzKj35JWuSRFnmkRR7HZ+nSpfHGG29kjT344INx+umn573PvXv3xrx581qMb9mypUP7OeOMM+KBBx7IGnv99dfjoYceyrs22tdtFiS+8MIL8bd/+7fxN3/zN3H22WeXuhy6gNY+drdPnz6xdOnSOHToUFx99dXx7//+7zFv3rx4z3veE/Pnzy9Bld2HPNL0x7lMmjQpJkyYEMuWLYvvfe978bvf/S4+//nPxwknnBAPPvhgVFRUlLBSAAAA2nN087Zc9t1VySMt8kiLPMqXfmJa5JEWeaRFHgAAlBv9krTIIy3ySIs8ypd+SVrkkRZ5pEUeHXfo0KG44447ssYuueSSmDBhwnHtt66ursVYfX19DB06tMP7uuyyy+KSSy7JGrvjjjvi0KFDedfHsXWLBYmNjY1x9dVXx8iRI+Pmm28udTmUufvvvz8iIs4///xWv/7hD384vvzlL8fGjRvjggsuiIiIhx56KHr37l20GrsTeaSprVzuu+++OPnkk+OGG26Iz33uc/Hyyy/HXXfdFYMGDSpFmQAAAHTA6tWry3LfXZU80iKPtMij/OgnpkUeaZFHWuQBAEC50i9JizzSIo+0yKP86JekRR5pkUda5JG/xx9/PLZv3541NmPGjOPa5+rVq2P37t0txtesWZP3PqdPn571eNu2bfEv//Ivee+PY2v5kWJd0Ny5c2Pr1q2xdu3a6NGjR6nLOS6ZTCb2799f6jKKrqmpqSTH3bZtW9x6660REdHQ0BBr166NZ555JgYMGBDf+ta32nzd3LlzY/HixfHWW2/FlClT4rzzzitSxS01NTVFQ0NDwfdZCvJoe5+l1JFcBgwYEPfee29ceeWV8fjjj8eECRNi0qRJJaj6sM7IAyg/f3wecE4AIFeuH3Q3TU1NsWHDhk7b/4YNG+LNN9/M+n8ipG3ySIs80iKP9ukn5k9/Vx6dTR4t91lK8igP5ucA5MP1g+5GvyQt8kiLPNIij/bpl+RP/0oenU0eLfdZSvJouc/j8eijj2Y9rq+vj49+9KN57y+TycSYMWNajC9cuDB69uyZ934/9rGPxciRI2PdunVHxv75n/85Lr/88rz3yTFkurif/exnmcrKysxtt92WNX7NNddkIiKzevXqElWWn3379mUiottvX/ziFzv1fX7ppZfaPPZpp52W2bp16zFfP3fu3CPPHzx4cKahoaFT6/1jX/ziF+VxFHl0juPJ5YMf/GAmIjKbN28uSq2/V4o8bDabzWaz2Ww2m81ms9lstpQ3/cS26e+2Th6FJw95HC9//7DZbDabzWaz2Ww2m617bvolbdO/ap08Ck8e8jhe5ZDHoEGDsl7/93//98f1Pc+ePbvVugrhO9/5TtY+a2trO/T6o/Mo1s9uOaqMLuzgwYNxzTXXxPDhw2PWrFmlLocydPHFF0cmk4lMJhOvvvpqfOtb34pXX301JkyYEPv27Wv1NWvXro1vfOMb8Z73vCdmzJgR27Zti9mzZxe58q5JHmnKJ5fevXtn/S8AAAAA0D3oJ6ZFHmmRR1rkAQAAAJBNvyQt8kiLPNIij8L57//+79i5c2fW2Pnnn5/3/vbu3Rvz5s1rMb5ly5a89/nHjq5tx44dsWvXroLsm2zl+5nTOdi3b19s3bo1IqLNj+0cPXp0RET88Ic/jP/1v/5XsUrLW58+fdo8AXZlN910UyxZsqSkNZxyyikxY8aMePPNN+PrX/963HLLLXHXXXdlPaexsTGuvvrqyGQy8dBDD8X73//+eOqpp2LRokVx5ZVXxrhx44pe9+TJk+POO+8s6D7lkb+umsfv5ZJLSjojD6D8NDQ0xIABAyIiYteuXdG3b98SVwRAOXD9oLtpamqKAQMGxIEDBzpl/zU1NbFr166oqurS7cqCkUda5JEWebRPPzF/+rtpkUda5JGW7vT3D/NzAPLh+kF3o1+SFnmkRR5pkUf79Evyp3+VFnmkRR5pSS2Pn//851mP+/fvH+9973vzrqWurq7FWH19fQwdOjTvff6xs88+O/r165e17urnP/95TJgwoSD75w/K944qBzU1NfGXf/mXrX5t5cqVsXXr1pgwYUKccsopUVtbW9zi8lRRUdEtm2DV1dWlLuGIr3zlK/HAAw/Ed77znbjxxhuzfnZuueWW2Lx5c8yePTvOO++8iIh46KGH4oMf/GBce+21sWHDhujTp09R662uri74z4w88tfV8/i9Y+WSks7IAyhvffv2dV4AoMNcP+guhg8fHs8//3yn7fvEE0/slH13VfJIizzSIo9j00/Mn/5uWuSRFnmkpbv+/cP8HIB8uH7QXeiXpEUeaZFHWuRxbPol+dO/Sos80iKPtKSWx/r167Men3vuudGjR4+89rV69erYvXt3i/E1a9bktb/W9OjRI84999x45plnjoytW7fOgsROUFnqAjpT79694/777291GzNmTEREzJ49O+6///4YOXJkaYulbPTu3TtmzpwZTU1N8bWvfe3I+HPPPRd33HFHnHPOOXHrrbceGR85cmTMmTMntm/fHjNnzixBxV2bPNLUVi4AAACUr9GjR5flvrsqeaRFHmmRR/nRT0yLPNIij7TIAwCAcqVfkhZ5pEUeaZFH+dEvSYs80iKPtMgjP3v37s16PHDgwLz2k8lkjqzj+mMLFy6Mnj175rXPthxd4x9/WiKF06UXJEJnue666+JP/uRP4uGHH47t27dHQ0NDfO5zn4sePXrEQw891OKEOGfOnKivr4/FixfHs88+W6Kquy55pOnoXAAAAChv1157bVnuu6uSR1rkkRZ5lCf9xLTIIy3ySIs8AAAoR/olaZFHWuSRFnmUJ/2StMgjLfJIizw6bsSIEfHJT34yLrvssrjooovinHPOyWs/c+bMaXV82rRpx1Neq4YPHx4XXXRRXHbZZfHJT34yRowYUfBjYEEi5KVXr14xe/bsOHjwYHz1q1+Nm2++ObZt2xa33HJL1NfXt3h+VVVVPPTQQ1FdXR2TJk2KhoaGElTddckjTUfnAgAAQHkbOXJkjB07tuD7HTt2rOZvHuSRFnmkRR7lST8xLfJIizzSIg8AAMqRfkla5JEWeaRFHuVJvyQt8kiLPNIij4777Gc/G9/73vfiRz/6USxfvjymT5/e4X3s3bs35s2b12J8y5YthSixhenTp8fy5cvjRz/6UXzve9+Lz3zmM51ynO6uqtQFlMrSpUtj6dKlpS6DRNXW1kYmkznmc6ZMmRJTpkw58njx4sXHfP4555wTjY2NBamvu5FHmvLJ5fd++tOfdlJVAAAAdKa77747Ro0aFU1NTQXZX3V1dbtzeNomj7TIIy3ySI9+YlrkkRZ5pEUeAAB0VfolaZFHWuSRFnmkR78kLfJIizzSIo801dXVtRirr6+PoUOHlqAaCsUnJAIAAAAAORk+fHjcdtttBdvfbbfdFuecc07B9tfdyCMt8kiLPAAAAACy6ZekRR5pkUda5AEAXcfq1atj9+7dLcbXrFlTgmooJAsSAQAAAICczZw5M2644Ybj3s+UKVNi5syZBaioe5NHWuSRFnkAAAAAZNMvSYs80iKPtMgDAMpfJpOJMWPGtBhfuHBh9OzZswQVUUgWJAIAAAAAOauoqIhFixbFvHnzorq6usOvr66ujnnz5sXf/d3fRUVFRSdU2L3IIy3ySIs8AAAAALLpl6RFHmmRR1rkAQDlb86cOa2OT5s2rciV0BksSAQAAAAAOqSioiJmzZoVzz//fIwdOzbn140dOzbWrl0bs2bN8sffApJHWuSRFnkAAAAAZNMvSYs80iKPtMgDAMrX3r17Y968eS3Gt2zZUoJq6AxVpS4AAAAAAChPw4cPj5UrV8b69evjgQceiNWrV8f69evjwIEDERFRU1MTw4cPj9GjR8e1114bI0aMKHHFXZs80iKPtMgDAAAAIJt+SVrkkRZ5pEUeAFB+6urqWozV19fH0KFDS1ANncGCRAAAAADguIwYMSIWLlwYEREHDx6MPXv2RETECSecEFVVWpDFJo+0/HEeb775ZrzjHe+IiIhdu3bFiSeeWMLKuid5AAAAAGTTT0yLPNKin5gWeQBAeVi9enXs3r27xfiaNWtKUA2dxewEAAAAACiYqqqqeNe73lXqMvh/5JGWP/4PhvzHQ6UnDwAAAIBs+olpkUda9BPTIg8ASFMmk4kxY8a0GF+4cGH07NmzBBXRWSpLXQAAAAAAAAAAAAAAAAAA5WvOnDmtjk+bNq3IldDZLEgEAAAAAAAAAAAAAAAAIC979+6NefPmtRjfsmVLCaqhs1mQCAAAAAAAAAAAAAAAAEBe6urqWozV19fH0KFDS1ANnc2CRMpSc3NzqUtIVineG3m0TR5p8d4AAAAAQDY9s7bp76ZFHmmRR1q8NwAAANA96Qm0Tf8qLfJIizzS0lXy+NWvfhW7d+9uMb5mzZqCH6sz+VnNnQWJlIWampqsxwcOHChRJelrbGzMetyrV6+CH0MeuZNHWoqRBwAAAACkTD8xd/q7aZFHWuSRFn//AAAAgO5BvyR3+ldpkUda5JGWrpBHJpOJG2+8scX4woULo2fPngU9VmfTb8+dBYmUhaN/iffv31+iStJ39HvTGSdAeeROHmkpRh4AAAAAkDL9xNzp76ZFHmmRR1r8/QMAAAC6B/2S3OlfpUUeaZFHWrpCHq+++mr853/+Z9bYO9/5zpg2bVpBj1MM+u25syCRsnDyySdnPf7Nb35TokrS9/LLL2c9Pumkkwp+DHnkTh5pKUYeAAAAAJAy/cTc6e+mRR5pkUda/P0DAAAAugf9ktzpX6VFHmmRR1q6Qh4DBgyIzZs3x9y5c6Ompib69u0bGzZsKOgxikW/PXcWJFIWBg8enPV427ZtJaokfVu3bs16PGTIkIIfQx65k0daipEHAAAAAKRMPzF3+rtpkUda5JEWf/8AAACA7kG/JHf6V2mRR1rkkZaukkfv3r3jq1/9amzatCkefvjhOOOMMwp+jGLQb8+dBYmUhaN/iXft2hV79uwpUTXp2rNnT7z66qtZY51xApRHbuSRlmLlAQAAAAAp00/Mjf5uWuSRFnmkxd8/AAAAoPvQL8mN/lVa5JEWeaSlK+ZRV1cXV1xxRafsu7Ppt3eMBYmUhTPPPDMqKiqyxo5eeUzL96SysjLe/e53F/w48siNPNJSrDwAAAAAIGX6ibnR302LPNIij7T4+wcAAAB0H/oludG/Sos80iKPtMgjLfrtHWNBImWhpqYmBg0alDW2YsWKElWTrqeffjrr8aBBg6Kmpqbgx5FHbuSRlmLlAQAAAAAp00/Mjf5uWuSRFnmkxd8/AAAAoPvQL8mN/lVa5JEWeaRFHmnRb+8YCxIpGxdffHHW42XLlpWoknQd/Z4c/Z4VkjzaJ4+0FDMPAAAAAEiZfmL79HfTIo+0yCMt/v4BAAAA3Yt+Sfv0r9Iij7TIIy3ySIt+e8dYkEjZmDhxYtbjtWvXxosvvliiatKzffv2eOGFF7LGjn7PCkkexyaPtBQ7DwAAAABImX7isenvpkUeaZFHWvz9AwAAALof/ZJj079KizzSIo+0yCMt+u0dZ0EiZeMjH/lInHLKKVljixYtKlE16bn77ruzHp966qkxbty4TjuePI5NHmkpdh4AAAAAkDL9xGPT302LPNIij7T4+wcAAAB0P/olx6Z/lRZ5pEUeaZFHWvTbO86CRMpGVVVVXHnllVljixYtil/+8pclqigdGzdubHExuOKKK6KqqqrTjimPtskjLaXIAwAAAABSpp/YNv3dtMgjLfJIi79/AAAAQPekX9I2/au0yCMt8kiLPNKi356fikwmkyl1EZCr7du3x/ve975obGw8MjZu3Lh45plnorKye66vbW5ujvHjx8eqVauOjNXU1MSmTZuirq6uU48tj5bkkZZS5gGUj4aGhujXr19EROzbty/69u1b4ooAKAeuHwDkw/UjLd09D/3ElvR30yKPtMgjLf7+8Qfd/XoOQH5cPwDIh+tHWrp7HvolLelfpUUeaZFHWuSRFv32/HXPnxjKVl1dXdx8881ZYytXrowvfOEL0dzcXKKqSqe5uTm+8IUvZJ38IiJmzpxZlJOfPLLJIy2lzgMAAAAAUqafmK3U/UR5ZJNHWuSRllLnAQAAAJSefkm2UvdL5JFNHmmRR1rkkZZS51HufEIiZWf//v1x9tlnx86dO7PGJ0+eHPfcc0+3WZn9+5PfkiVLssZra2tj8+bN0bt376LUIY/D5JGWVPIAykN3/39MAyA/rh8A5MP1Iy3y0E/8vVT6ifI4TB5pkUdaUskjJa7nAOTD9QOAfLh+pEUe+iW/l0q/RB6HySMt8kiLPNKSSh7lrHv8pNCl9OnTJ+67776oqqrKGl+yZEmMHz8+Nm7cWKLKimfjxo0xfvz4Fie/qqqquPfee4t68pOHPFKTUh4AAAAAkDL9xLT6ifKQR2rkkZaU8gAAAABKT78krX6JPOSRGnmkRR5pSSmPcmZBImXpoosuikcffbTFSXDVqlVRX18fN910U2zfvr1E1XWe7du3x0033RT19fUtPha2qqoqHn300bjooouKXpc85JGCVPMAAAAAgJTpJ6bVT5SHPFIgj7SkmgcAAABQevolafVL5CGPFMgjLfJIS6p5lKuKTCaTKXURkK8f/vCHcdVVV8XBgwdb/fr73//+mDhxYlx44YUxZMiQOOGEE4pc4fHZs2dPbN26NZ5++ulYtmxZvPDCC60+7/cnv8svv7zIFWaTx2HyKI5yywNIV0NDQ/Tr1y8iIvbt2xd9+/YtcUUAlAPXDwDy4fqRFnlk0088LJV+ojwOk0dxyCMt5ZZHqbmeA5AP1w8A8uH6kRZ5ZNMvOSyVfok8DpNHccgjLfJIS7nlUW4sSKTsPfXUU/FXf/VXsWPHjnafe+qpp8aQIUPijDPOiD59+kRNTU1UVqbxQaHNzc3R2NgY+/fvj5dffjm2bt0ar776aruvq62tjXvvvTeZldjykEdn6Cp5AGnSoAQgH64fAOTD9SMt8mhJPzGtfqI85NEZ5CGPrsb1HIB8uH4AkA/Xj7TIoyX9krT6JfKQR2eQhzw6gzzSyqOcWJBIl/DWW2/F/PnzY8GCBdHY2FjqcoqipqYmZs6cGbNmzYrevXuXupws8pBHqaWcB5AeDUoA8uH6AUA+XD/SIo/W6Sem1U+UhzxKTR5pSTmPUnE9ByAfrh8A5MP1Iy3yaJ1+SVr9EnnIo9TkkRZ5pCXlPMqFBYl0Kdu3b4/bb789Hnvssdi9e3epy+kUp556alxxxRUxY8aMqKurK3U5xySPtMgDoHUalADkw/UDgHy4fqRFHsemn5gWeaRFHmmRR/fmeg5APlw/AMiH60da5HFs+iVpkUda5JEWeaRFHnSEBYl0SQcPHoyVK1fGsmXLYvny5bFjx44o1x/1ioqKqK2tjYsvvjgmTpwY48aNi6qqqlKX1SHySIs8ALJpUAKQD9cPAPLh+pEWeeRGPzEt8kiLPNIij+7J9RyAfLh+AJAP14+0yCM3+iVpkUda5JEWeaRFHuTCgkS6hcbGxnjppZdi69atsXXr1nj99dfj7bffjrfffrvUpWXp1atX9OrVK0466aQYMmRIDBkyJN797ndHTU1NqUsrKHmkRR5Ad6dBCUA+XD8AyIfrR1rkkR/9xLTIIy2dlUdTU1MsWbIkIiImT54c1dXVx7U/ecijK3E9ByAfrh8A5MP1Iy3yyI9+YlrkkRb9xLTIIy3OV7TGgkQAALo1DUoA8uH6AUA+XD/SIg+gXDhfpUUeaZEHAPlw/QAgH64faZEHUC6cr9IiDyicylIXAAAAAAAAAAAAAAAAAACkz4JEAAAAAAAAAAAAAAAAAKBdFiQCAAAAAAAAAAAAAAAAAO2yIBEAAAAAAAAAAAAAAAAAaJcFiQAAAAAAAAAAAAAAAABAuyxIBAAAAAAAAAAAAAAAAADaZUEiAAAAAAAAAAAAAAAAANAuCxIBAAAAAAAAAAAAAAAAgHZZkAgAAAAAAAAAAAAAAAAAtMuCRAAAAAAAAAAAAAAAAACgXRYkAgAAAAAAAAAAAAAAAADtsiARAAAAAAAAAAAAAAAAAGiXBYkAAAAAAAAAAAAAAAAAQLssSAQAAAAAAAAAAAAAAAAA2mVBIgAAAAAAAAAAAAAAAADQLgsSAQAAAAAAAAAAAAAAAIB2WZAIAAAAAAAAAAAAAAAAALTLgkQAAAAAAAAAAAAAAAAAoF0WJAIAAAAAAAAAAAAAAAAA7aoqdQFQDI2NjfHiiy/G1q1bY9u2bfHaa6/F22+/HY2NjaUuLUtNTU306tUrTj755Bg8eHAMGTIkzjzzzKipqSl1aQUlj7TIAygXnXW+ampqOvLvm266Kaqrq49rf93lfOX6AQAAAADkSn83Lfq7AAAAAECu9BNpjQWJdEkHDx6MZ599NpYtWxbLly+PnTt3RiaTKXVZeamoqIhBgwbFxRdfHBMnToyPfOQjUVVVXr+68kiLPIByUYrz1ZIlSzplv13hfOX6AQAAAADkSn83Lfq7AAAAAECu9BPJRUWmXH8qoBXbtm2Lb3/72/HYY4/F7t27S11OpzjllFPiyiuvjBkzZkRdXV2pyzkmeaRFHkC5cL5KizwAWtfQ0BD9+vWLiIh9+/ZF3759S1wRAOXA9SMt8gDKhfNVWuRxbPqJaZEHQOtczwHIh+tHWuQBlAvnq7TI49j0E+kICxLpEvbv3x/z58+PBQsWxIEDB0pdTlHU1NTEzTffHLNmzYo+ffqUupws8pBHqaWcB9A256u0zlfySCsPID0alADkw/UjLfIAyoXzVVrk0Tr9xLT6ifJIKw8gPa7nAOTD9SMt8gDKhfNVWuTROv1E/cR8WJBI2Xvqqafiuuuui507d7b73AEDBsTgwYNj4MCB0adPn+jZs2dUVlYWocr2NTc3x4EDB2L//v3xm9/8JrZt2xa7du1q93W1tbVx7733xkUXXVSEKtsnD3l0hq6SB9A256u0zlfySCsPIE0alADkw/UjLfIAyoXzVVrk0ZJ+Ylr9RHmklQeQJtdzAPLh+pEWeQDlwvkqLfJoqav1Ezdu3Bi//e1vo6mpST+xk1mQSFn74Q9/GFdddVUcPHiw1a9/4AMfiIkTJ8YFF1wQQ4YMiRNOOKHIFR6fPXv2xNatW2PFihXx6KOPxgsvvNDq86qqquLRRx+Nyy+/vMgVZpPHYfIojnLLA2ib89VhqZyv5HFYKnkA6dKgBCAfrh9pkQdQLpyv0iKPbPqJh6XST5THYankAaTL9RyAfLh+pEUeQLlwvkqLPLJ1pX5ic3NzfOUrX4kFCxbED37wg7j88sv1EzuZBYmUrbZOfj169IipU6fG1KlT48wzzyxRdZ1j+/btcffdd8eiRYvi0KFDWV8r9UlQHvIotZTzANrmfJXW+UoeaeUBpE2DEoB8uH6kRR5AuXC+Sos8/kA/Ma1+ojzSygNIm+s5APlw/UiLPIBy4XyVFnn8QVfqJ7711ltx9dVXx/e///2IiPjtb38bp512Wovn6ScWlgWJlKWnnnoqLr300hYnv3HjxsXixYtj2LBhJaqsOH75y1/GDTfcECtXrswar6qqip/85CdF/7hYecgjJanlAbTN+Sqt85U80soDSJ8GJQD5cP1IizyAcuF8lRZ5HKafmFY/UR5p5QGkz/UcgHy4fqRFHkC5cL5KizwO60r9xF27dsWECRPiF7/4RURE1NbWxksvvXTM1+gnFkZlqQuAjtq/f39cd911LU5+kydPjmeeeaasTn75GjZsWDzzzDMxefLkrPGDBw/GX/3VX8Vbb71VtFrkIY/UpJQH0Dbnq7TOV/JIKw8AAAAASJl+Ylr9RHmklQcAAAAApKwr9RM3bdoU55133pHFiBERo0ePbvd1+omFYUEiZWf+/Pmxc+fOrLHJkyfHPffcE5WV3edHurKyMu65554WJ8EdO3bE/Pnzi1aHPA6TR1pSyQNom/PVYamcr+RxWCp5AAAAAEDK9BMPS6WfKI/DUskDAAAAAFLWVfqJK1asiDFjxrT4XnJZkBihn1gIFZlMJlPqIiBX27Zti2HDhkVjY+ORsXHjxsUzzzxTVie/Qmpubo7x48fHqlWrjozV1NTEpk2boq6urlOPLY+W5JGWUuYBtM35qiXXj7S4fgC5aGhoiH79+kVExL59+6Jv374lrgiAcuD6kRZ5AOXC+Sot3T0P/cSW9HfTor8L5KK7X88ByI/rR1rkAZQL56u0dPc8uko/8f7774/rr7++xac8RkT8x3/8R4waNSrnfekn5q98fmIgIr797W9nnfx69OgRixcvLquTX6FVVlbG4sWLo0ePHkfGGhsb4/bbb+/0Y8ujJXmkpZR5AG1zvmrJ9SMtrh8AAAAA0Dr9xJb0d9OivwsAAAAArSv3fmJzc3PMnDkzJk+e3OpixN69e8eIESM6tE/9xPyVx08NRMTBgwfjscceyxqbOnVqDBs2rEQVpeOcc86JqVOnZo394Ac/aPUkWyjyaJs80lKKPIC2OV+1zfUjLa4fAAAAAJBNP7Ft+rtp0d8FAAAAgGzl3k9866234qqrropvfvObbT5n1KhRUV1d3eF96yfmx4JEysazzz4bu3fvzho7+pe+O5syZUrW41dffTVWrlzZaceTx7HJIy3FzgNom/PVsbl+pMX1AwAAAAD+QD/x2PR306K/CwAAAAB/UM79xF27dsX48eNbLKg82ujRo/M+hn5ix1mQSNlYtmxZ1uMPfOADceaZZ5aomvTU1dXF+9///qyxo9+zQpLHsckjLcXOA2ib89WxuX6kxfUDAAAAAP5AP/HY9HfTor8LAAAAAH9Qrv3ETZs2xXnnnRe/+MUvssYrK1suhzueBYn6iR1nQSJlY/ny5VmPJ06cWKJK0nX0e3L0e1ZI8mifPNJSzDyAtjlftc/1Iy2uHwAAAABwmH5i+/R306K/CwAAAACHlWM/8emnn44xY8bEzp07s8ZPPPHEuP3221s8/0Mf+tBxHU8/sWMsSKQsNDY2tjiJXHDBBSWqJl0XXnhh1uOdO3dGY2NjwY8jj9zIIy3FygNom/NVblw/0uL6AQAAAAD6ibnS302L/i4AAAAAlGc/ccmSJXHJJZfEnj17ssZra2vjZz/7WfTp06fF+GmnnXZcx9RP7BgLEikLL774YmQymayxs846q0TVpGvIkCFZj5ubm+Oll14q+HHkkRt5pKVYeQBtc77KjetHWlw/AAAAAEA/MVf6u2nR3wUAAACA8uonNjc3x8yZM+O6666LQ4cOZX3tvPPOizVr1sTZZ58dq1evzvra6NGjj/vY+okdY0EiZWHr1q1ZjwcMGBD9+/cvUTXpOuGEE+LUU0/NGjv6vSsEeeRGHmkpVh5A25yvcuP6kRbXDwAAAADQT8yV/m5a9HcBAAAAoHz6ifv374+rrroqvvnNb7b69UceeSQGDBgQEdEpCxL1EzvGgkTKwrZt27IeDx48uESVpO/oVdmdcQKUR+7kkZZi5AG0zfkqd64faXH9AAAAAKC700/Mnf5uWvR3AQAAAOjuyqWf+MYbb8Rbb73V5tfPOuusuOSSS+K1116L//qv/8r6WiEWJEboJ3aEBYmUhddeey3r8cCBA0tUSfrOOOOMrMevv/56wY8hj9zJIy3FyANom/NV7lw/0uL6AQAAAEB3p5+YO/3dtOjvAgAAANDdlUs/8Ywzzoh//dd/jccffzxqa2tbfc6TTz4Zp5xyStZY7969Y8SIEQWr4Y/pJ7bNgkTKwttvv531uE+fPiWqJH1HvzdHv3eFII/cySMtxcgDaJvzVe5cP9Li+gEAAABAd6efmDv93bTo7wIAAADQ3aXcTzx06FAcOnToyOOKioqYMGFCbN68OebOnZvTPkaNGhXV1dUFqUc/MXdVpS4ActHY2Jj1uGfPniWqJH01NTVZjzvjBCiP3MkjLcXIA2ib81XuXD/S4voBAAAAQHenn5g7/d206O8CAAAA0N2Vup944MCBWL9+fda2adOm2Lt3bzQ1NUVERHV1dfTv3z/e9773xYgRI2LEiBHxp3/6pzntf/To0QWrVT8xdxYkUpYqK324Z1tK8d7Io23ySIv3BtLid7Jtrh9p8d4AAAAAQDY9s7bp76bFewMAAAAA2YrVM1u3bl088MAD8Y//+I/xxhtvHPO5TU1N8cYbb8SqVati1apVHTpOIRck6ifmzoJEAAAAAAAAAAAAAAAAAPJ28ODB+Id/+Ie45557Yt26dQXf/6WXXhorVqzI+tTHD33oQwU/Du2zIBEAAAAAAAAAAAAAAACAvKxevTquv/76WL9+facd4yc/+UkMHTo03vnOd8bq1aujtrY2TjvttE47Hm2zIBEAAAAAAAAAAAAAAACADnn99ddj1qxZcf/99x/zeWeddVaMGDHiyHb66adHTU1NREQ0NjbGK6+8EuvXr4+vfe1rWZ+AeLRf/epXERFx4YUXxrBhwwr3jdAhFiQCAAAAAAAAJKqpqanVfwMAAAAAkDb9Xbq6devWxZ//+Z/HK6+80urXBw4cGJ/73Ofimmuuibq6umPuq76+Pk466aS45ZZbcjr2008/HZs3b46rr746Ro4c2dHSOU6VpS4AAAAAAAAAgD9Yt25dTJs2Lc4999wYMGDAkfEBAwbEueeeG9OmTYv169eXsEIAAAAAAFqjv0t38eSTT8b555/f6mLEYcOGxRNPPBEvvfRS3Hbbbe0uRoyIyGQyMWbMmBbjd955ZzzxxBOtfhriK6+8Eueff348+eST+X0T5M2CRAAAAAAAAIAEbNiwIcaNGxf19fWxaNGieP755+PAgQNHvn7gwIF4/vnnY9GiRTFy5MgYN25cbNiwoYQVAwAAAAAQob9L9/LjH/84JkyYEA0NDVnjffv2jdtvvz1eeOGF+PjHPx49evTIeZ9z5sxpdfzGG2+Mj3/84/HCCy/E7bffHn379s36ekNDQ1x22WXx4x//uOPfCHmzIBEAAAAAAACghDKZTMyfPz9GjRoVq1atyvl1q1atilGjRsX8+fMjk8l0YoUAAAAAALRGf5fu5rnnnosrr7wympqassbHjh0bW7ZsienTp0d1dXWH9rl3796YN29ei/EtW7Yc+Xd1dXVMnz49tmzZEueff37W8w4cOBBXXnllPPfccx06LvmzIBEAAAAAAACgRDKZTEydOjVmz57d4o/3uWhqaorZs2fH1KlT/UcrAAAAAABFpL9Ld/M///M/8elPf7rFz/unPvWpePrpp2PgwIF57beurq7FWH19fQwdOrTF+MCBA2PFihXxqU99Kmu8qakpPv3pT8fvfve7vGqgY7r8gsTa2tqoqKhodRs/fnypyyNRO3bsaPHzUl1dHaeffnpcddVV8fzzz2c9f+/evVFbWxu9evWKzZs3t7rPBQsWREVFRXz+858vxrfQpcgjTbnmctddd0VFRUVMmjSpzX399Kc/jcrKyjj33HPj4MGDxfoWgG7C+Sot8gAAAADItmDBgli8ePFx72fx4sWxYMGCAlQE6dBPTIs8AAAAALLp79KdZDKZmDx5cvz617/OGr/22mvjkUceiZqamrz2u3r16ti9e3eL8TVr1rT5mpqamnjkkUfi2muvzRr/9a9/HZMnT7bAtwiqSl1AMZx44olx4403thivra0tei2Ul7q6uvjsZz8bERENDQ2xdu3aWLZsWfzoRz+KFStWxLhx4yIion///vHAAw/EBRdcENdcc02sXr06qqr+8Ou1cePGmDt3bgwaNCjuvPPOknwvXYE80tReLl/60pfi8ccfj6VLl8YVV1wRf/EXf5H1+n379sWkSZOipqYmHn744aysAArJ+Sot8gAAAACI2LBhQ8ydO7dg+5s7d2584hOfiOHDhxdsn5AC/cS0yAMAAABAf5fuZ8mSJfHYY49ljY0fPz7uu+++6NGjR177zGQyMWbMmBbjCxcujJ49ex7ztT169Ij77rsvtm/fHs8+++yR8e9///tx//33x+TJk/Oqidx0i67uO97xjrj11ltLXQZlaPDgwS1+dubPnx+zZ8+Ov/7rv846aX3sYx+LG264Ie6+++74xje+ceTmoqmpKa6++upoamqKBx98MPr371/Mb6FLkUeacsll6dKlMXz48Jg8eXJs2rQpTjrppCPPnT59euzYsSPuvPPOeO9731vk6oHuxPkqLfIAAAAAiJgyZUo0NTUVbH9NTU0xZcqUWLlyZcH2CSnQT0yLPAAAAAD0d+le9u/fH7Nnz84ae9e73hXf/e53816MGBExZ86cVsenTZuW0+t79OgR3/3ud2PEiBHxxhtvHBmfPXt2fOYzn4k+ffrkXRvHVlnqAqDc/OVf/mVERKxdu7bF1xYsWBCDBw+Or3/967Fu3bqIiLjtttti3bp1MXXq1PjoRz9azFK7BXmk6ehcBg0aFHfddVfs2rUrrr/++iPPW758edx3333x0Y9+NL70pS+VpFage3O+Sos8AAAAgO5k3bp1sWrVqoLvd9WqVbF+/fqC7xdSo5+YFnkAAAAA3Yn+Lt3N0qVLsxb8RUQ8+OCDcfrpp+e9z71798a8efNajG/ZsqVD+znjjDPigQceyBp7/fXX46GHHsq7NtrXLRYkNjY2xtKlS+Mb3/hG3H333fHzn/+81CXRBVRVtfyA0T59+sTSpUvj0KFDcfXVV8e///u/x7x58+I973lPzJ8/vwRVdh/ySNMf5zJp0qSYMGFCLFu2LL73ve/F7373u/j85z8fJ5xwQjz44INRUVFRwkqB7s75Ki3yAAAAALqDo/84Xi77htToJ6ZFHgAAAEB3oL9Ld3Lo0KG44447ssYuueSSmDBhwnHtt66ursVYfX19DB06tMP7uuyyy+KSSy7JGrvjjjvi0KFDedfHsXWLBYn//d//HZMmTYo5c+bE1KlT40Mf+lB88IMfjO3bt5e6NMrQ/fffHxER559/fqtf//CHPxxf/vKXY+PGjXHBBRdERMRDDz0UvXv3LlqN3Yk80tRWLvfdd1+cfPLJccMNN8TnPve5ePnll+Ouu+6KQYMGlaJMAOerxMgDAAAA6E5Wr15dlvuGVOgnpkUeAAAAQHeiv0t38vjjj7dYfzVjxozj2ufq1atj9+7dLcbXrFmT9z6nT5+e9Xjbtm3xL//yL3nvj2Nr+ZFiXcykSZNi7NixMWzYsOjXr1/813/9V9xxxx3xyCOPxJ/92Z/Fxo0bo3///qUuM2eZTCb2799f6jKKrqmpqSTH3bZtW9x6660REdHQ0BBr166NZ555JgYMGBDf+ta3/n/27j/M6rrOG/9rhhmGH2pb/sA7JUYHlAyBMcxglbT1R24trnLhldVt6oppAunKJRLebFlXQFlKSKti5o92vVfSdNuuRLkvE9aFXPXmR0AFKJR+C1ArYMBhYM73D27Jw5kfZw7nnM/nzDwe1/W59LznzOfz4rzmfN7v85S30+73zZw5M+bPnx+7d++OSZMmxRlnnFGminO1tLREU1NT0c+ZBP1o/5xJ6kpfBgwYEPfcc0+MHz8+nnzyyRg3blxceeWVCVS9Xyn6AbTP/apw5o/u3w+g8rz7PuCeAEC+zB/poh9AklpaWmLVqlUlO/+qVaviz3/+c9ZvKqM4eur8IU8snHy3+/cDqDw9dT4H4NCYP9JFP4AkyXcrV0+dPw41T3z00UezHjc2NsY555xT8PkymUyMGTMmZ3zu3LnRu3fvgs/78Y9/PEaOHBkrVqw4MPZv//ZvcfHFFxd8TjqQ6aH+5//8n5mIyHz7299OupQu2blzZyYievzxxS9+saSv86uvvtrutY899tjM+vXrO/z+mTNnHnj+4MGDM01NTSWt992++MUv6sdB9KM0DqUvH/nIRzIRkVm7dm1Zan1HEv1wOBztH+5X7TN/tK0n9cPhcDgcDofD4XA4HA6Hw+FI8yFPbJ98t209qR8Oh8PhcDgcDofD4XA4HA5Hmo+u5omDBg3K+v5//ud/PqTMbvr06W3WVQzf+973ss5ZX1/fpe8/OE8sV/Zaiaqjh/rCF74QERHPP/98wpWQZhdccEFkMpnIZDKxdevW+Na3vhVbt26NcePGxc6dO9v8npdeeim+8Y1vxMknnxxTp06NDRs2xPTp08tcefekH+lUSF/69u2b9U+AcnC/Shf9AAAAAADyJU9MF/0AAAAAgJ7hD3/4Q2zevDlr7Mwzzyz4fDt27IhZs2bljK9bt67gc77bwbVt2rQptmzZUpRzk63H/g7Xo446KiIq79es9uvXr90Avzu78cYbY8GCBYnWcPTRR8fUqVPjz3/+c3z961+PW2+9Ne68886s5zQ3N8fll18emUwmHnzwwTjttNPi6aefjnnz5sX48eNj7NixZa974sSJcccddxT1nPpRuO7aj3fk05c0KUU/gPa5XxXO/JEu5g8gYn+eMGDAgIiI2LJlS/Tv3z/higCoBOaPdNEPIEktLS0xYMCA2LNnT0nOX1dXF1u2bImamh77n4NLpqfOH/LEwsl300W+C0T03PkcgENj/kgX/QCSJN+tXD11/jiUPPEXv/hF1uPDDz88PvjBDxZcS0NDQ85YY2NjDB06tOBzvtspp5wShx12WNa+q1/84hcxbty4opyfv+ixd6h33hT19fXJFtJFVVVVPeam9261tbVJl3DAl7/85bj//vvje9/7Xtxwww1ZP0O33nprrF27NqZPnx5nnHFGREQ8+OCD8ZGPfCSuuuqqWLVqVfTr16+s9dbW1hb9Z0Y/Ctfd+/GOjvqSJqXoB9A+96vCmT/SxfwBHKx///7uCwB0mfkjXfQDSMLw4cPjxRdfLNm53/Oe95Tk3PxFT5o/5ImFk++mi3wXOFhPms8BKB7zR7roB5AE+W7l60nzx6HkiStXrsx6fPrpp0evXr0KOteyZcti27ZtOePLly8v6Hxt6dWrV5x++unx7LPPHhhbsWKFDYklUJ10AaX0q1/9Knbt2tXm+LRp0yIi4jOf+Uy5y6LC9e3bN6ZNmxYtLS3xta997cD4888/H9/5znfi1FNPja985SsHxkeOHBkzZsyIjRs3Hvi5o3j0I53a6wtA2rhfpYt+AAAAAD3J6NGjK/LckBbyxHTRDwAAAKAnke/SU+zYsSPr8cCBAws6TyaTiTFjxuSMz507N3r37l3QOdtzcI3v/m2JFE+33pD4v//3/45jjz02PvWpT8X1118fN998c/z93/99DB8+PP7whz/E9OnTY+zYsUmXSQW65ppr4v3vf3889NBDsXHjxmhqaoorrrgievXqFQ8++GDODXHGjBnR2NgY8+fPj+eeey6hqrsv/Uing/sCkFbuV+miHwAAAEBPcdVVV1XkuSFN5Inpoh8AAABATyHfpacYMWJEfPrTn46LLroozj///Dj11FMLOs+MGTPaHJ8yZcqhlNem4cOHx/nnnx8XXXRRfPrTn44RI0YU/Rp08w2J55xzTlx44YXxm9/8Jn74wx/GHXfcEb/4xS/ib//2b2PRokXxjW98I+kSqVB9+vSJ6dOnx969e+OrX/1q3HzzzbFhw4a49dZbo7GxMef5NTU18eCDD0ZtbW1ceeWV0dTUlEDV3Zd+pNPBfQFIK/erdNEPAAAAoKcYOXJknHXWWUU/71lnneU/rtNjyBPTRT8AAACAnkK+S0/xuc99Lh555JF44oknYtGiRXHTTTd1+Rw7duyIWbNm5YyvW7euGCXmuOmmm2LRokXxxBNPxCOPPBKf/exnS3Kdnq4m6QJK6WMf+1h87GMfS7oMKlB9fX1kMpkOnzNp0qSYNGnSgcfz58/v8PmnnnpqNDc3F6W+nkY/0qmQvrzj5z//eYmqAsjlfpUu+gEAAADwF3fddVeMGjUqWlpainK+2traTv8bCVQSeWK66AcAAADAX8h3IT8NDQ05Y42NjTF06NAEqqFYuvVvSAQAAAAAAABIq+HDh8dtt91WtPPddtttceqppxbtfAAAAAAAtE2+C51btmxZbNu2LWd8+fLlCVRDMdmQCAAAAAAAAJCQadOmxfXXX3/I55k0aVJMmzatCBUBAAAAAJAP+S60L5PJxJgxY3LG586dG717906gIorJhkQAAAAAAACAhFRVVcW8efNi1qxZUVtb2+Xvr62tjVmzZsV3v/vdqKqqKkGFAAAAAAC0Rb4L7ZsxY0ab41OmTClzJZSCDYkAAAAAAAAACaqqqopbbrklXnzxxTjrrLPy/r6zzjorXnrppbjlllv8ZRUAAAAAgATIdyHXjh07YtasWTnj69atS6AaSqEm6QIAAAAAAAAAiBg+fHgsWbIkVq5cGffff38sW7YsVq5cGXv27ImIiLq6uhg+fHiMHj06rrrqqhgxYkTCFQMAAAAAECHfhXdraGjIGWtsbIyhQ4cmUA2lYEMiAAAAAAAAQIqMGDEi5s6dGxERe/fuje3bt0dExBFHHBE1Nf4TLwAAAABAWsl36emWLVsW27Ztyxlfvnx5AtVQKu5mAAAAAAAAAClVU1MT73vf+5IuAwAAAACALpLv0tNkMpkYM2ZMzvjcuXOjd+/eCVREqVQnXQAAAAAAAAAAAAAAAAAAlWvGjBltjk+ZMqXMlVBqNiQCAAAAAAAAAAAAAAAAUJAdO3bErFmzcsbXrVuXQDWUmg2JAAAAAAAAAAAAAAAAABSkoaEhZ6yxsTGGDh2aQDWUmg2JVKTW1takS0itJF4b/WiffqSL1wbSxXuyfeaPdPHaAAAAAEA2mVn75Lvp4rUBAAAAgGylyMx+9atfxbZt23LGly9fXvRrlZI8MX82JFIR6urqsh7v2bMnoUrSr7m5Oetxnz59in4N/ciffqRLOfoBtM/9Kn/mj3QxfwAAAADQ08kT8yffTRf5LgAAAAA9XanzxEwmEzfccEPO+Ny5c6N3795FvVapyRPzZ0MiFeHgN/GuXbsSqiT9Dn5tSnED1I/86Ue6lKMfQPvcr/Jn/kgX8wcAAAAAPZ08MX/y3XSR7wIAAADQ05U6T9y6dWv8+te/zhp773vfG1OmTCnqdcpBnpg/GxKpCEcddVTW49/97ncJVZJ+r732WtbjI488sujX0I/86Ue6lKMfQPvcr/Jn/kgX8wcAAAAAPZ08MX/y3XSR7wIAAADQ05U6TxwwYECsXbs2Zs6cGXV1ddG/f/9YtWpVUa9RLvLE/NmQSEUYPHhw1uMNGzYkVEn6rV+/PuvxkCFDin4N/ciffqRLOfoBtM/9Kn/mj3QxfwAAAADQ08kT8yffTRf5LgAAAAA9XTnyxL59+8ZXv/rVWLNmTTz00ENx/PHHF/0a5SBPzJ8NiVSEg9/EW7Zsie3btydUTXpt3749tm7dmjVWihugfuRHP9KlXP0A2ud+lR/zR7qYPwAAAABAnpgv+W66yHcBAAAAoLx5YkNDQ1xyySUlOXepyRO7xoZEKsKJJ54YVVVVWWMH7zwm9zWprq6OE044oejX0Y/86Ee6lKsfQPvcr/Jj/kgX8wcAAAAAyBPzJd9NF/kuAAAAAMgT8yVP7BobEqkIdXV1MWjQoKyxxYsXJ1RNej3zzDNZjwcNGhR1dXVFv45+5Ec/0qVc/QDa536VH/NHupg/AAAAAECemC/5brrIdwEAAABAnpgveWLX2JBIxbjggguyHi9cuDChStLr4Nfk4NesmPSjc/qRLuXsB9A+96vOmT/SxfwBAAAAAPvJEzsn300X+S4AAAAA7CdP7Jw8sWtsSKRiTJgwIevxSy+9FK+88kpC1aTPxo0b4+WXX84aO/g1Kyb96Jh+pEu5+wG0z/2qY+aPdDF/AAAAAMBfyBM7Jt9NF/kuAAAAAPyFPLFj8sSusyGRivGxj30sjj766KyxefPmJVRN+tx1111Zj4855pgYO3Zsya6nHx3Tj3Qpdz+A9rlfdcz8kS7mDwAAAAD4C3lix+S76SLfBQAAAIC/kCd2TJ7YdTYkUjFqampi/PjxWWPz5s2LX/7ylwlVlB6rV6/OmQwuueSSqKmpKdk19aN9+pEuSfQDaJ/7VfvMH+li/gAAAACAbPLE9sl300W+CwAAAADZ5IntkycWxoZEKsrUqVOjrq7uwON9+/bF9ddfH62trQlWlazW1ta4/vrrY9++fQfG6urqYurUqSW/tn7k0o90SbIfQPvcr3KZP9LF/AEAAAAAbZMn5pLvpot8FwAAAADaJk/MJU8snA2JVJSGhoa4+eabs8aWLFkS1157bY+8Cba2tsa1114bS5cuzRqfNm1aNDQ0lPz6+pFNP9Il6X4A7XO/ypb0/Uo/siXdDwAAAABIM3litqTzRP3IlnQ/AAAAACDN5InZ5ImHpiqTyWSSLgK6YteuXXHKKafE5s2bs8YnTpwYd999d1RX94x9tu/c/BYsWJA1Xl9fH2vXro2+ffuWpQ792E8/0iUt/QDa5361X1ruV/qxX1r6AVSGpqamOOywwyIiYufOndG/f/+EKwKgEpg/0kU/ACiE+UOe+I605In6sV9a+gFUBvM5AIUwf6SLfgBQCPOHPPEd8sRD1zN+UuhW+vXrF/fee2/U1NRkjS9YsCDOPvvsWL16dUKVlc/q1avj7LPPzrn51dTUxD333FPWm59+6EfapKkfQPvcr9J1v9KPdPUDAAAAANJMnpiuPFE/0tUPAAAAAEgzeaI8sVhsSKQinX/++fHoo4/m3ASXLl0ajY2NceONN8bGjRsTqq50Nm7cGDfeeGM0Njbm/FrYmpqaePTRR+P8888ve136oR9pkNZ+AO1zv0rX/Uo/0tUPAAAAAEgzeWK68kT9SFc/AAAAACDN5InyxGKoymQymaSLgEL9+Mc/jksvvTT27t3b5tdPO+20mDBhQpx33nkxZMiQOOKII8pc4aHZvn17rF+/Pp555plYuHBhvPzyy20+752b38UXX1zmCrPpx376UR6V1g+gfe5X+6XlfqUf+6WlH0B6NTU1xWGHHRYRETt37oz+/fsnXBEAlcD8kS76AUAhzB/Z5In7pSVP1I/90tIPIL3M5wAUwvyRLvoBQCHMH9nkifvJEwtjQyIV7+mnn44vfOELsWnTpk6fe8wxx8SQIUPi+OOPj379+kVdXV1UV6fjF4W2trZGc3Nz7Nq1K1577bVYv359bN26tdPvq6+vj3vuuSc1O7H1Qz9Kobv0A2if+1W67lf6ka5+AOkkoASgEOaPdNEPAAph/sglT0xXnqgf6eoHkE7mcwAKYf5IF/0AoBDmj1zyRHlioWxIpFvYvXt3zJ49O+bMmRPNzc1Jl1MWdXV1MW3atLjllluib9++SZeTRT/0I2lp7gfQPverdN2v9CNd/QDSR0AJQCHMH+miHwAUwvzRNnliuvJE/UhXP4D0MZ8DUAjzR7roBwCFMH+0TZ4oTyyEDYl0Kxs3bozbb789Hnvssdi2bVvS5ZTEMcccE5dccklMnTo1Ghoaki6nQ/qRLvoBVAr3q3TRD4C2CSgBKIT5I130A4BCmD86Jk9MF/0AaJv5HIBCmD/SRT8AKIT5o2PyRLrChkS6pb1798aSJUti4cKFsWjRoti0aVNU6o96VVVV1NfXxwUXXBATJkyIsWPHRk1NTdJldYl+pIt+AJXC/Spd9AMgm4ASgEKYP9JFPwAohPkjP/LEdNEPgGzmcwAKYf5IF/0AoBDmj/zIE8mHDYn0CM3NzfHqq6/G+vXrY/369fHmm2/G22+/HW+//XbSpWXp06dP9OnTJ4488sgYMmRIDBkyJE444YSoq6tLurSi0o900Q+gUrhfpUup+tHS0hILFiyIiIiJEydGbW3tIZ2vp/QDKD8BJQCFMH+ki34AUAjzR2Hku+ki3wV6OvM5AIUwf6SLfgBQCPNHYeS7tMWGRAAAIDV84AcqhfsVAIUwf6SLfgBQCPMHtM/7A6gU7lcAFML8kS76AUAhzB9QPNVJFwAAAAAAAAAAAAAAAAAApJ8NiQAAAAAAAAAAAAAAAABAp2xIBAAAAAAAAAAAAAAAAAA6ZUMiAAAAAAAAAAAAAAAAANApGxIBAAAAAAAAAAAAAAAAgE7ZkAgAAAAAAAAAAAAAAAAAdMqGRAAAAAAAAAAAAAAAAACgUzYkAgAAAAAAAAAAAAAAAACdsiERAAAAAAAAAAAAAAAAAOiUDYkAAAAAAAAAAAAAAAAAQKdsSAQAAAAAAAAAAAAAAAAAOmVDIgAAAAAAAAAAAAAAAADQKRsSAQAAAAAAAAAAAAAAAIBO2ZAIAAAAAAAAAAAAAAAAAHTKhkQAAAAAAAAAAAAAAAAAoFM2JAIAAAAAAAAAAAAAAAAAnbIhEQAAAAAAAAAAAAAAAADolA2JAAAAAAAAAAAAAAAAAECnbEgEAAAAAAAAAAAAAAAAADpVk3QBUA7Nzc3xyiuvxPr162PDhg3xxhtvxNtvvx3Nzc1Jl5alrq4u+vTpE0cddVQMHjw4hgwZEieeeGLU1dUlXVpR6Ue66AcAAABAtlLlJS0tLQf+/cYbb4za2tpDOp+8BAAAAAAgm3wXAKC47DegLTYk0i3t3bs3nnvuuVi4cGEsWrQoNm/eHJlMJumyClJVVRWDBg2KCy64ICZMmBAf+9jHoqamst66+pEu+gEAAACQLYm8ZMGCBSU5r7wEAAAAAOhJ5LsAAMVlvwH5qMpU6k8FtGHDhg3x7W9/Ox577LHYtm1b0uWUxNFHHx3jx4+PqVOnRkNDQ9LldEg/0kU/AKgETU1Ncdhhh0VExM6dO6N///4JVwTQNvcrgO5BXtKzmc8BKIT5A9rn/QFUCvcrgO5Bvtuzmc8BKIT5o2PWV3SFDYl0C7t27YrZs2fHnDlzYs+ePUmXUxZ1dXVx8803xy233BL9+vVLupws+qEfSUtzPwDomA/8QKVwvwKobPISeUmE+RyAwpg/oH3eH0ClcL8CqGzyXfluhPkcgMKYP9pmfWV9VQgbEql4Tz/9dFxzzTWxefPmTp87YMCAGDx4cAwcODD69esXvXv3jurq6jJU2bnW1tbYs2dP7Nq1K373u9/Fhg0bYsuWLZ1+X319fdxzzz1x/vnnl6HKzumHfpRCd+kHAJ3zgR+oFO5XAJVLXiIveYf5HIBCmD+gfd4fQKVwvwKoXPJd+e47zOcAFML8kau7ra9Wr14dv//976OlpcX6qsRsSKSi/fjHP45LL7009u7d2+bXP/zhD8eECRPi3HPPjSFDhsQRRxxR5goPzfbt22P9+vWxePHiePTRR+Pll19u83k1NTXx6KOPxsUXX1zmCrPpx376UR6V1g8A8uMDP1Ap3K8AKpO8ZD95yX7mcwAKYf6A9nl/AJXC/QqgMsl395Pv7mc+B6AQ5o9s3Wl91draGl/+8pdjzpw58fjjj8fFF19sfVViNiRSsdq7+fXq1SsmT54ckydPjhNPPDGh6kpj48aNcdddd8W8efNi3759WV9L+iaoH/qRtDT3A4D8+cAPVAr3K4DKIy+RlxzMfA5AIcwf0D7vD6BSuF8BVB75rnz3YOZzAAph/viL7rS+2r17d1x++eXxox/9KCIifv/738exxx6b8zzrq+KyIZGK9PTTT8cnP/nJnJvf2LFjY/78+TFs2LCEKiuPX/7yl3H99dfHkiVLssZramripz/9adl/Xax+6EeapK0fAHSND/xApXC/Aqgs8hJ5SVvM5wAUwvwB7fP+ACqF+xVAZZHvynfbYj4HoBDmj/260/pqy5YtMW7cuHjhhRciIqK+vj5effXVDr/H+qo4qpMuALpq165dcc011+Tc/CZOnBjPPvtsRd38CjVs2LB49tlnY+LEiVnje/fujS984Quxe/fustWiH/qRNmnqBwAAAJA8eYm8BAAAAACoTPJd+S4AUFzdaX21Zs2aOOOMMw5sRoyIGD16dKffZ31VHDYkUnFmz54dmzdvzhqbOHFi3H333VFd3XN+pKurq+Puu+/OuQlu2rQpZs+eXbY69GM//UiXtPQDAAAASJ68ZD95CQAAAABQaeS7+8l3AYBi6S7rq8WLF8eYMWNy/iz5bEiMsL4qhqpMJpNJugjI14YNG2LYsGHR3Nx8YGzs2LHx7LPPVtTNr5haW1vj7LPPjqVLlx4Yq6urizVr1kRDQ0NJr60fufQjXZLsBwCFaWpqisMOOywiInbu3Bn9+/dPuCKAtrlfAVQGeUkueclfmM8BKIT5A9rn/QFUCvcrgMog380l3/0L8zkAhejp80d3WV/dd999cd111+X8lseIiP/+7/+OUaNG5X0u66vCVc5PDETEt7/97aybX69evWL+/PkVdfMrturq6pg/f3706tXrwFhzc3PcfvvtJb+2fuTSj3RJsh8AAABA8uQlueQlAAAAAEAlkO/mku8CAIei0tdXra2tMW3atJg4cWKbmxH79u0bXOwGpQAAdNZJREFUI0aM6NI5ra8KVxk/NRARe/fujcceeyxrbPLkyTFs2LCEKkqPU089NSZPnpw19vjjj7d5ky0W/WiffqRLEv0AAAAAkicvaZ+8BAAAAABIM/lu++S7AEAhKn19tXv37rj00kvjm9/8ZrvPGTVqVNTW1nb53NZXhbEhkYrx3HPPxbZt27LGDn7T92STJk3Kerx169ZYsmRJya6nHx3Tj3Qpdz8AAACA5MlLOiYvAQAAAADSSr7bMfkuANBVlby+2rJlS5x99tk5GyoPNnr06IKvYX3VdTYkUjEWLlyY9fjDH/5wnHjiiQlVkz4NDQ1x2mmnZY0d/JoVk350TD/Spdz9AAAAAJInL+mYvAQAAAAASCv5bsfkuwBAV1Xq+mrNmjVxxhlnxAsvvJA1Xl2dux3uUDYkWl91nQ2JVIxFixZlPZ4wYUJClaTXwa/Jwa9ZMelH5/QjXcrZDwAAACB58pLOyUsAAAAAgDSS73ZOvgsAdEUlrq+eeeaZGDNmTGzevDlr/D3veU/cfvvtOc//6Ec/ekjXs77qGhsSqQjNzc05N5Fzzz03oWrS67zzzst6vHnz5mhubi76dfQjP/qRLuXqBwAAAJA8eUl+5CUAAAAAQNrId/Mj3wUA8lWJ66sFCxbEhRdeGNu3b88ar6+vj//6r/+Kfv365Ywfe+yxh3RN66uusSGRivDKK69EJpPJGjvppJMSqia9hgwZkvW4tbU1Xn311aJfRz/yox/pUq5+AAAAAMmTl+RHXgIAAAAApI18Nz/yXQAgX5W0vmptbY1p06bFNddcE/v27cv62hlnnBHLly+PU045JZYtW5b1tdGjRx/yta2vusaGRCrC+vXrsx4PGDAgDj/88ISqSa8jjjgijjnmmKyxg1+7YtCP/OhHupSrHwAAAEDy5CX5kZcAAAAAAGkj382PfBcAyFelrK927doVl156aXzzm99s8+sPP/xwDBgwICKiJBsSra+6xoZEKsKGDRuyHg8ePDihStLv4F3ZpbgB6kf+9CNdytEPAAAAIHnykvzJSwAAAACANJHv5k++CwDko1LWV2+99Vbs3r273a+fdNJJceGFF8Ybb7wRv/nNb7K+VowNiRHWV11hQyIV4Y033sh6PHDgwIQqSb/jjz8+6/Gbb75Z9GvoR/70I13K0Q8AAAAgefKS/MlLAAAAAIA0ke/mT74LAOSjUtZXxx9/fPzHf/xHPPnkk1FfX9/mc5566qk4+uijs8b69u0bI0aMKFoN72Z91T4bEqkIb7/9dtbjfv36JVRJ+h382hz82hWDfuRPP9KlHP0AAAAAkicvyZ+8BAAAAABIE/lu/uS7AEA+0ry+2rdvX+zbt+/A46qqqhg3blysXbs2Zs6cmdc5Ro0aFbW1tUWpx/oqfzVJFwD5aG5uznrcu3fvhCpJv7q6uqzHpbgB6kf+9CNdytEPAAAAIHnykvzJSwAAAACANJHv5k++CwDkI+n11Z49e2LlypVZx5o1a2LHjh3R0tISERG1tbVx+OGHx4c+9KEYMWJEjBgxIj7wgQ/kdf7Ro0cXrVbrq/zZkEhFqq72yz3bk8Rrox/t04908doAAABAzyQTaJ/XBgAAAABIMxlm+7w2AEAhyrWGWLFiRdx///3xL//yL/HWW291+NyWlpZ46623YunSpbF06dIuXaeYGxKtr/JnQyIAAAAAAAAAAAAAAAAABdu7d298//vfj7vvvjtWrFhR9PN/8pOfjMWLF2f91sePfvSjRb8OnbMhEQAAAAAAAAAAAAAAAICCLFu2LK677rpYuXJlya7x05/+NIYOHRrvfe97Y9myZVFfXx/HHntsya5H+2xIBAAAAAAAAAAAAAAAAKBL3nzzzbjlllvivvvu6/B5J510UowYMeLAcdxxx0VdXV1ERDQ3N8frr78eK1eujK997WtZvwHxYL/61a8iIuK8886LYcOGFe8PQpfYkAgAAAAVoKWlJXbs2BEREYcffnjU1tYmXFHP1tLS0ua/AwAAAAAcTL6bLvJdAAAAKI4VK1bEpz71qXj99dfb/PrAgQPjiiuuiM9//vPR0NDQ4bkaGxvjyCOPjFtvvTWvaz/zzDOxdu3auPzyy2PkyJFdLZ1DVJ10AQAAAEDbVqxYEVOmTInTTz89DjvssDjyyCPjyCOPjMMOOyxOP/30mDJlSqxcuTLpMnuMd/djwIABB8YHDBigHwAAAABAFvluush3AQAAoLieeuqpOPPMM9vcjDhs2LD42c9+Fq+++mrcdtttnW5GjIjIZDIxZsyYnPE77rgjfvazn7X52xBff/31OPPMM+Opp54q7A9BwWxIBAAAgJRZtWpVjB07NhobG2PevHnx4osvxp49ew58fc+ePfHiiy/GvHnzYuTIkTF27NhYtWpVghV3b/oBAAAAAORLnpgu+gEAAADF95Of/CTGjRsXTU1NWeP9+/eP22+/PV5++eX4xCc+Eb169cr7nDNmzGhz/IYbbohPfOIT8fLLL8ftt98e/fv3z/p6U1NTXHTRRfGTn/yk638QCmZDIgAAAKREJpOJ2bNnx6hRo2Lp0qV5f9/SpUtj1KhRMXv27MhkMiWssGfRDwAAAAAgX/LEdNEPAAAAKI3nn38+xo8fHy0tLVnjZ511Vqxbty5uuummqK2t7dI5d+zYEbNmzcoZX7du3YF/r62tjZtuuinWrVsXZ555Ztbz9uzZE+PHj4/nn3++S9elcDYkAgAAQApkMpmYPHlyTJ8+PSesyUdLS0tMnz49Jk+e7C9JFIF+AAAAAAD5kiemi34AAABAafzxj3+Mz3zmMzmfty+77LJ45plnYuDAgQWdt6GhIWessbExhg4dmjM+cODAWLx4cVx22WVZ4y0tLfGZz3wm/vSnPxVUA13TYzYk/vjHP47zzjsvjjzyyOjTp0+ccMIJcdlll8Xvfve7pEsjhTZt2hRVVVVZR21tbRx33HFx6aWXxosvvpj1/B07dkR9fX306dMn1q5d2+Y558yZE1VVVXH11VeX44/QrehHOuXblzvvvDOqqqriyiuvbPdcP//5z6O6ujpOP/302Lt3b7n+CAAAqTJnzpyYP3/+IZ9n/vz5MWfOnCJU1LPpBwCFkJcAAAD0TPLEdNEPAAoh3wUA6Fgmk4mJEyfGb3/726zxq666Kh5++OGoq6sr6LzLli2Lbdu25YwvX7683e+pq6uLhx9+OK666qqs8d/+9rcxceJE/4OhMqhJuoBSy2Qyce2118a9994bDQ0N8elPfzoOP/zw+P/+v/8vnnvuudi8eXPBO3Dp/hoaGuJzn/tcREQ0NTXFSy+9FAsXLownnngiFi9eHGPHjo2IiMMPPzzuv//+OPfcc+Pzn/98LFu2LGpq/vL2Wr16dcycOTMGDRoUd9xxRyJ/lu5AP9Kps7586UtfiieffDIeeOCBuOSSS+Lv/u7vsr5/586dceWVV0ZdXV089NBDWb0CAOgpVq1aFTNnziza+WbOnBl/+7d/G8OHDy/aOXsS/QDgUMlLAAAAeg55YrroBwCHSr4LANC2BQsWxGOPPZY1dvbZZ8e9994bvXr1KuicmUwmxowZkzM+d+7c6N27d4ff26tXr7j33ntj48aN8dxzzx0Y/9GPfhT33XdfTJw4saCayE+3X+V+97vfjXvvvTe++MUvxne/+92cH3L/5xE6Mnjw4PjKV76SNTZ79uyYPn16/K//9b+yblof//jH4/rrr4+77rorvvGNbxwIN1taWuLyyy+PlpaW+MEPfhCHH354Of8I3Yp+pFM+fXnggQdi+PDhMXHixFizZk0ceeSRB5570003xaZNm+KOO+6ID37wg2WuHgAgHSZNmhQtLS1FO19LS0tMmjQplixZUrRz9iT6AcChkpcAAAD0HPLEdNEPAA6VfBcAINeuXbti+vTpWWPve9/74oc//GHBmxEjImbMmNHm+JQpU/L6/l69esUPf/jDGDFiRLz11lsHxqdPnx6f/exno1+/fgXXRseqky6glHbv3h1f/epX48QTT4y5c+e2+UPu/zxCV/3DP/xDRES89NJLOV+bM2dODB48OL7+9a/HihUrIiLitttuixUrVsTkyZPjnHPOKWepPYJ+pNPBfRk0aFDceeedsWXLlrjuuusOPG/RokVx7733xjnnnBNf+tKXEqkVACBpK1asiKVLlxb9vEuXLo2VK1cW/bzdnX4AUCryEgAAgO5Hnpgu+gFAqch3AYCe7oEHHsja8BcR8YMf/CCOO+64gs+5Y8eOmDVrVs74unXrunSe448/Pu6///6ssTfffDMefPDBgmujc916Q+LTTz8df/zjH+Pv//7vY9++ffH444/H7Nmz4+67744NGzYkXR4Vrq3NrP369YsHHngg9u3bF5dffnn853/+Z8yaNStOPvnkmD17dgJV9hz6kU7v7suVV14Z48aNi4ULF8YjjzwSf/rTn+Lqq6+OI444In7wgx9EVVVVgpUCACTn4DCkUs7dXekHAKUmLwEAAOg+5Inpoh8AlJp8FwDoifbt2xff+c53ssYuvPDCGDdu3CGdt6GhIWessbExhg4d2uVzXXTRRXHhhRdmjX3nO9+Jffv2FVwfHevWGxLf+T+R9OrVK4YPHx7jx4+P6dOnx3XXXRcnn3xyTJ06NeEKqUT33XdfRESceeaZbX79r//6r+Mf//EfY/Xq1XHuuedGRMSDDz4Yffv2LVuNPYl+pFN7fbn33nvjqKOOiuuvvz6uuOKKeO211+LOO++MQYMGJVEmAEAqLFu2rCLP3V3pBwClIi8BAADofuSJ6aIfAJSKfBcA6MmefPLJ2LhxY9bYoe7HWrZsWWzbti1nfPny5QWf86abbsp6vGHDhvj3f//3gs9Hx3J/pVg3snXr1ojYv6v1tNNOixdeeCE++MEPxv/9v/83rrnmmvj2t78dDQ0NWb8uPe0ymUzs2rUr6TLKrqWlJZHrbtiwIb7yla9ERERTU1O89NJL8eyzz8aAAQPiW9/6VrvfN3PmzJg/f37s3r07Jk2aFGeccUaZKs7V0tISTU1NRT9nEvSj/XMmqSt9GTBgQNxzzz0xfvz4ePLJJ2PcuHFx5ZVXJlD1fqXoBwCH5t33ZfdoeoKWlpZYtWpVyc6/atWq+POf/9zmbxQnl34AdB/yksL1pLzE5w8ACmH+gPZ5f9DTyBPTRT8Aug/5buHkuwDQsZ46fxzq+urRRx/NetzY2BjnnHNOwefLZDIxZsyYnPG5c+dG7969Cz7vxz/+8Rg5cmSsWLHiwNi//du/xcUXX1zwOelAphubOHFiJiIyffv2zbz++utZX1u9enWmuro609DQkFB1hdm5c2cmInr88cUvfrGkr/Orr77a7rWPPfbYzPr16zv8/pkzZx54/uDBgzNNTU0lrffdvvjFL+rHQfSjNA6lLx/5yEcyEZFZu3ZtWWp9RxL9cDgcDofD4XA4HA6Hw5H8IS9pn7zE4XA4HA6Hw+FwOBwOh8PhcKT5kO+2T77rcDgcDoejkKOr66tBgwZlff8///M/H9IaZvr06W3WVQzf+973ss5ZX1/fpe8/eH1VrrVoJaqObuw973lPRESMGjUq3v/+92d9bdiwYXHiiSfGxo0b409/+lMC1VEJLrjggshkMpHJZGLr1q3xrW99K7Zu3Rrjxo2LnTt3tvk9L730UnzjG9+Ik08+OaZOnRobNmyI6dOnl7ny7kk/0qmQvvTt2zfrnwAAAADdibwEAAAAAKAyyXcBAP7iD3/4Q2zevDlr7Mwzzyz4fDt27IhZs2bljK9bt67gc77bwbVt2rQptmzZUpRzk60m6QJK6eSTT46IiL/6q79q8+vvjO/evbvd56RNv3792v1A053deOONsWDBgkRrOProo2Pq1Knx5z//Ob7+9a/HrbfeGnfeeWfWc5qbm+Pyyy+PTCYTDz74YJx22mnx9NNPx7x582L8+PExduzYstc9ceLEuOOOO4p6Tv0oXHftxzvy6UualKIfAByapqamGDBgQEREbNmyJfr3759wRVBaLS0tMWDAgNizZ09Jzl9XVxdbtmyJmppu/fG/aPQDoPuQlxSuJ+UlPn8AUAjzB7TP+4OeRp6YLvoB0H3Idwsn3wWAjvXU+eNQ1le/+MUvsh4ffvjh8cEPfrDgWhoaGnLGGhsbY+jQoQWf891OOeWUOOyww7L2Xf3iF7+IcePGFeX8/EW3TkjOOeeciGh7p2xLS0ts2LAh+vfvH0cffXS5SytYVVVVj7npvVttbW3SJRzw5S9/Oe6///743ve+FzfccEPU19cf+Nqtt94aa9eujenTp8cZZ5wREREPPvhgfOQjH4mrrroqVq1aFf369StrvbW1tUX/mdGPwnX3fryjo76kSSn6AUDx9O/f332aHmH48OHx4osvluzc73nPe0py7u5KPwC6B3lJ4XpqXuLzBwCFMH9A+7w/6CnkiemiHwDdg3y3cPJdAMhfT5o/DmV9tXLlyqzHp59+evTq1augcy1btiy2bduWM758+fKCzteWXr16xemnnx7PPvvsgbEVK1bYkFgC1UkXUEoNDQ1x/vnnx4YNG+K+++7L+trs2bPjT3/6U1x88cX+z1V0Sd++fWPatGnR0tISX/va1w6MP//88/Gd73wnTj311PjKV75yYHzkyJExY8aM2LhxY0ybNi2Birs3/Uin9voCAECu0aNHV+S5uyv9AKBU5CUAAADdjzwxXfQDgFKR7wIAPdWOHTuyHg8cOLCg82QymRgzZkzO+Ny5c6N3794FnbM9B9f47t+WSPF06w2JERHf+9734phjjomJEyfGpz71qZg6dWr8zd/8TcycOTMGDRoU3/rWt5IukQp0zTXXxPvf//546KGHYuPGjdHU1BRXXHFF9OrVKx588MGcG+KMGTOisbEx5s+fH88991xCVXdf+pFOB/cFAIC2XXXVVRV57u5KPwAoJXkJAABA9yJPTBf9AKCU5LsAQE80YsSI+PSnPx0XXXRRnH/++XHqqacWdJ4ZM2a0OT5lypRDKa9Nw4cPj/PPPz8uuuii+PSnPx0jRowo+jXoARsSGxoa4sUXX4wrrrgiXnrppfjud78b69evj+uvvz5eeOGFOPbYY5MukQrUp0+fmD59euzduze++tWvxs033xwbNmyIW2+9NRobG3OeX1NTEw8++GDU1tbGlVdeGU1NTQlU3X3pRzod3BcAANo2cuTIOOuss4p+3rPOOkuYUgD9AKCU5CUAAADdizwxXfQDgFKS7wIAPdHnPve5eOSRR+KJJ56IRYsWxU033dTlc+zYsSNmzZqVM75u3bpilJjjpptuikWLFsUTTzwRjzzySHz2s58tyXV6upqkCyiHgQMHxg9+8IOky6CC1NfXRyaT6fA5kyZNikmTJh14PH/+/A6ff+qpp0Zzc3NR6utp9COdCunLO37+85+XqCoAgMp01113xahRo6KlpaUo56utre10TUz79AOAQslLAAAAeh55YrroBwCFku8CAJRGQ0NDzlhjY2MMHTo0gWoolm7/GxIBAAAg7YYPHx633XZb0c532223xamnnlq08/U0+gEAAAAA5EuemC76AQAAAOmxbNmy2LZtW8748uXLE6iGYrIhEQAAAFJg2rRpcf311x/yeSZNmhTTpk0rQkU9m34AAAAAAPmSJ6aLfgAAAEDyMplMjBkzJmd87ty50bt37wQqophsSAQAAIAUqKqqinnz5sWsWbOitra2y99fW1sbs2bNiu9+97tRVVVVggp7Fv0AAAAAAPIlT0wX/QAAAIDkzZgxo83xKVOmlLkSSsGGRAAAAEiJqqqquOWWW+LFF1+Ms846K+/vO+uss+Kll16KW265xV+OKCL9AAAAAADyJU9MF/0AAACA5OzYsSNmzZqVM75u3boEqqEUapIuAAAAAMg2fPjwWLJkSaxcuTLuv//+WLZsWaxcuTL27NkTERF1dXUxfPjwGD16dFx11VUxYsSIhCvu3vQDAAAAAMiXPDFd9AMAAADKr6GhIWessbExhg4dmkA1lIINiQAAAJBSI0aMiLlz50ZExJ///Of4q7/6q4iI2LJlS7znPe9JsLKe6d392Lt3b2zfvj0iIo444oioqRGxAAAAAAB/Id9NF/kuAAAAlMeyZcti27ZtOePLly9PoBpKRZoCAAAAFeDdfyHCX45IXk1NTbzvfe9LugwAAAAAoALId9NFvgsAAAClkclkYsyYMTnjc+fOjd69eydQEaVSnXQBAAAAAAAAAAAAAAAAAFSuGTNmtDk+ZcqUMldCqdmQCAAAAAAAAAAAAAAAAEBBduzYEbNmzcoZX7duXQLVUGo2JAIAAAAAAAAAAAAAAABQkIaGhpyxxsbGGDp0aALVUGo2JFKRWltbky4htZJ4bfSjffqRLl4bAAAA6JlkAu3z2gAAAAAAaSbDbJ/XBgAoRCnWEL/61a9i27ZtOePLly8v+rVKyfoqfzYkUhHq6uqyHu/ZsyehStKvubk563GfPn2Kfg39yJ9+pEs5+gEAAAAkT16SP3kJAAAAAJAm8t38yXcBgHyUen2VyWTihhtuyBmfO3du9O7du6jXKjXrq/zZkEhFOPhNvGvXroQqSb+DX5tS3AD1I3/6kS7l6AcAAACQPHlJ/uQlAAAAAECayHfzJ98FAPJR6vXV1q1b49e//nXW2Hvf+96YMmVKUa9TDtZX+bMhkYpw1FFHZT3+3e9+l1Al6ffaa69lPT7yyCOLfg39yJ9+pEs5+gEAAAAkT16SP3kJAAAAAJAm8t38yXcBgHyUen01YMCAWLt2bcycOTPq6uqif//+sWrVqqJeo1ysr/JnQyIVYfDgwVmPN2zYkFAl6bd+/fqsx0OGDCn6NfQjf/qRLuXoBwAAAJA8eUn+5CUAAAAAQJrId/Mn3wUA8lGO9VXfvn3jq1/9aqxZsyYeeuihOP7444t+jXKwvsqfDYlUhIPfxFu2bInt27cnVE16bd++PbZu3Zo1VooboH7kRz/SpVz9AAAAAJInL8mPvAQAAAAASBv5bn7kuwBAvsq5vmpoaIhLLrmkJOcuNeurrrEhkYpw4oknRlVVVdbYwTuPyX1Nqqur44QTTij6dfQjP/qRLuXqBwAAAJA8eUl+5CUAAAAAQNrId/Mj3wUA8mV9lR/rq66xIZGKUFdXF4MGDcoaW7x4cULVpNczzzyT9XjQoEFRV1dX9OvoR370I13K1Q8AAAAgefKS/MhLAAAAAIC0ke/mR74LAOTL+io/1lddY0MiFeOCCy7Ierxw4cKEKkmvg1+Tg1+zYtKPzulHupSzHwAAAEDy5CWdk5cAAAAAAGkk3+2cfBcA6Arrq85ZX3WNDYlUjAkTJmQ9fumll+KVV15JqJr02bhxY7z88stZYwe/ZsWkHx3Tj3Qpdz8AAACA5MlLOiYvAQAAAADSSr7bMfkuANBV1lcds77qOhsSqRgf+9jH4uijj84amzdvXkLVpM9dd92V9fiYY46JsWPHlux6+tEx/UiXcvcDAAAASJ68pGPyEgAAAAAgreS7HZPvAgBdZX3VMeurrrMhkYpRU1MT48ePzxqbN29e/PKXv0yoovRYvXp1zmRwySWXRE1NTcmuqR/t0490SaIfAAAAQPLkJe2TlwAAAAAAaSbfbZ98FwAohPVV+6yvCmNDIhVl6tSpUVdXd+Dxvn374vrrr4/W1tYEq0pWa2trXH/99bFv374DY3V1dTF16tSSX1s/culHuiTZDwAAACB58pJc8hIAAAAAoBLId3PJdwGAQ2F9lcv6qnA2JFJRGhoa4uabb84aW7JkSVx77bU98ibY2toa1157bSxdujRrfNq0adHQ0FDy6+tHNv1Il6T7AQAAACRPXpJNXgIAAAAAVAr5bjb5LgBwqKyvsllfHZqqTCaTSboI6Ipdu3bFKaecEps3b84anzhxYtx9991RXd0z9tm+c/NbsGBB1nh9fX2sXbs2+vbtW5Y69GM//UiXtPQDgK5ramqKww47LCIidu7cGf3790+4IkgP7w8AKIy8ZD95SS7rKwAKYf6A9nl/QPu8PwCgMPLd/eS7uayvACiE+cP66h3WV4euZ/yk0K3069cv7r333qipqckaX7BgQZx99tmxevXqhCorn9WrV8fZZ5+dc/OrqamJe+65p6w3P/3Qj7RJUz8AAACA5MlL5CUAAAAAQGWS78p3AYDisr6yvioWGxKpSOeff348+uijOTfBpUuXRmNjY9x4442xcePGhKornY0bN8aNN94YjY2NOb8WtqamJh599NE4//zzy16XfuhHGqS1HwAAAEDy5CXyEgAAAACgMsl35bsAQHFZX1lfFUNVJpPJJF0EFOrHP/5xXHrppbF37942v37aaafFhAkT4rzzzoshQ4bEEUccUeYKD8327dtj/fr18cwzz8TChQvj5ZdfbvN579z8Lr744jJXmE0/9tOP8qi0fgCQn6ampjjssMMiImLnzp3Rv3//hCuC9PD+AIBDJy/ZT16yn/UVAIUwf0D7vD+gfd4fAHDo5Lv7yXf3s74CoBDmj2zWV/tZXxXGhkQq3tNPPx1f+MIXYtOmTZ0+95hjjokhQ4bE8ccfH/369Yu6urqork7HLwptbW2N5ubm2LVrV7z22muxfv362Lp1a6ffV19fH/fcc09qdmLrh36UQnfpBwCd84Ef2uf9AQDFIS+Rl7zD+gqAQpg/oH3eH9A+7w8AKA75rnz3HdZXABTC/JHL+sr6qlA2JNIt7N69O2bPnh1z5syJ5ubmpMspi7q6upg2bVrccsst0bdv36TLyaIf+pG0NPcDgI75wA/t8/4AgOKRl8hLIqyvACiM+QPa5/0B7fP+AIDike/KdyOsrwAojPmjbdZX1leFsCGRbmXjxo1x++23x2OPPRbbtm1LupySOOaYY+KSSy6JqVOnRkNDQ9LldEg/0kU/AKgEPvBD+7w/AKD45CU9m/UVAIUwf0D7vD+gfd4fAFB88t2ezfoKgEKYPzpmfUVX2JBIt7R3795YsmRJLFy4MBYtWhSbNm2KSv1Rr6qqivr6+rjgggtiwoQJMXbs2KipqUm6rC7Rj3TRDwDSzAd+aJ/3BwCUjrykZ7K+AqAQ5g9on/cHtM/7AwBKR77bM1lfAVAI80d+rK/Ihw2J9AjNzc3x6quvxvr162P9+vXx5ptvxttvvx1vv/120qVl6dOnT/Tp0yeOPPLIGDJkSAwZMiROOOGEqKurS7q0otKPdNEPANLEB35on/cHAJSPvKRnsL4CoBDmD2if9we0z/sDAMpHvtszWF8BUAjzR2Gsr2iLDYkAAEBq+MAP7fP+AAAoLusrAAph/oD2eX9A+7w/AACKy/oKgEKYP6B4qpMuAAAAAAAAAAAAAAAAAABIPxsSAQAAAAAAAAAAAAAAAIBO2ZAIAAAAAAAAAAAAAAAAAHTKhkQAAAAAAAAAAAAAAAAAoFM2JAIAAAAAAAAAAAAAAAAAnbIhEQAAAAAAAAAAAAAAAADolA2JAAAAAAAAAAAAAAAAAECnbEgEAAAAAAAAAAAAAAAAADplQyIAAAAAAAAAAAAAAAAA0CkbEgEAAAAAAAAAAAAAAACATtmQCAAAAAAAAAAAAAAAAAB0yoZEAAAAAAAAAAAAAAAAAKBTNiQCAAAAAAAAAAAAAAAAAJ2yIREAAAAAAAAAAAAAAAAA6JQNiQAAAAAAAAAAAAAAAABAp2xIBAAAAAAAAAAAAAAAAAA6ZUMiAAAAAAAAAAAAAAAAANApGxIBAAAAAAAAAAAAAAAAgE7ZkAgAAAAAAAAAAAAAAAAAdKom6QKgHJqbm+OVV16J9evXx4YNG+KNN96It99+O5qbm5MuLUtdXV306dMnjjrqqBg8eHAMGTIkTjzxxKirq0u6tKLSj3TRDwCofObzdClVP1paWg78+4033hi1tbWHdL6e0g8AAAAASDP5brrIdwEAAACyya9oiw2JdEt79+6N5557LhYuXBiLFi2KzZs3RyaTSbqsglRVVcWgQYPiggsuiAkTJsTHPvaxqKmprLeufqSLfgBA5TOfp0sS/ViwYEFJztsd+gEAAAAAaSbfTRf5LgAAAEA2+RX5qMpU6k8FtGHDhg3x7W9/Ox577LHYtm1b0uWUxNFHHx3jx4+PqVOnRkNDQ9LldEg/0kU/AKgETU1Ncdhhh0VExM6dO6N///4JV5Qu5vN00Q8AgMrm8wcAhTB/QPu8PzomT0wX/QAAqGw+fwBQCPNHx+QldIUNiXQLu3btitmzZ8ecOXNiz549SZdTFnV1dXHzzTfHLbfcEv369Uu6nCz6oR9JS3M/AOiYD/xtM5+naz7Xj3T1AwCgUD5/AFAI8we0z/ujbfLEdOWJ+pGufgAAFMrnDwAKYf5om7xEXlIIGxKpeE8//XRcc801sXnz5k6fO2DAgBg8eHAMHDgw+vXrF717947q6uoyVNm51tbW2LNnT+zatSt+97vfxYYNG2LLli2dfl99fX3cc889cf7555ehys7ph36UQnfpBwCd84E/l/k8XfO5fqSrHwAAh8LnDwAKYf6A9nl/5JInpitP1I909QMA4FD4/AFAIcwfubpbXrJ69er4/e9/Hy0tLfKSErMhkYr24x//OC699NLYu3dvm1//8Ic/HBMmTIhzzz03hgwZEkcccUSZKzw027dvj/Xr18fixYvj0UcfjZdffrnN59XU1MSjjz4aF198cZkrzKYf++lHeVRaPwDIjw/82czn+6VlPteP/dLSDwCAQ+XzBwCFMH9A+7w/sskT90tLnqgf+6WlHwAAh8rnDwAKYf7I1p3yktbW1vjyl78cc+bMiccffzwuvvhieUmJ2ZBIxWrv5terV6+YPHlyTJ48OU488cSEqiuNjRs3xl133RXz5s2Lffv2ZX0t6ZugfuhH0tLcDwDy5wP/X5jP0zWf60e6+gEAUAw+fwBQCPMHtM/74y/kienKE/UjXf0AACgGnz8AKIT54y+6U16ye/fuuPzyy+NHP/pRRET8/ve/j2OPPTbnefKS4rIhkYr09NNPxyc/+cmcm9/YsWNj/vz5MWzYsIQqK49f/vKXcf3118eSJUuyxmtqauKnP/1p2X9drH7oR5qkrR8AdI0P/PuZz9M1n+tHuvoBAFAsPn8AUAjzB7TP+2M/eWK68kT9SFc/AACKxecPAAph/tivO+UlW7ZsiXHjxsULL7wQERH19fXx6quvdvg98pLisCGRirNr16445ZRTYvPmzVnjEydOjLvvvjuqq6sTqqy8Wltb49prr40FCxZkjdfX18fatWujb9++ZalDP/bTj3RJSz8A6Dof+M3n70jLfK4f+6WlHwAAxeTzBwCFMH9A+7w/5InvSEueqB/7paUfAADF5PMHAIUwf3SvvGTNmjXxyU9+MuvPctlll8W//uu/dvq98pJDVzk/KfD/zJ49u1vc/A5VdXV13H333TFx4sSs8U2bNsXs2bPLVod+7Kcf6ZKWfgBAIczn+6VlPteP/dLSDwAAAABIM3nifmnJE/Vjv7T0AwAAAEhed8lLFi9eHGPGjMn5s4wePTqv75eXHDq/IZGKsmHDhhg2bFg0NzcfGBs7dmw8++yzFXXzK6bW1tY4++yzY+nSpQfG6urqYs2aNdHQ0FDSa+tHLv1IlyT7AUBhevr/gch8nsv6Kl2srwCA7qSnf/4AoDDmD2hfT39/yBNzyXfTRb4LAHQnPf3zBwCF6enzR3fJS+6777647rrrYu/evTlf++///u8YNWpU3ueSlxSucn5iICK+/e1vZ938evXqFfPnz6+om1+xVVdXx/z586NXr14Hxpqbm+P2228v+bX1I5d+pEuS/QCAQpjPc1lfpYv1FQAAAAC0TZ6YS76bLvJdAAAA6NkqPS9pbW2NadOmxcSJE9vcjNi3b98YMWJEl84pLylcZfzUQETs3bs3HnvssayxyZMnx7BhwxKqKD1OPfXUmDx5ctbY448/3uZNtlj0o336kS5J9AMACmE+b5/1VbpYXwEAAABANnli++S76SLfBQAAgJ6p0vOS3bt3x6WXXhrf/OY3233OqFGjora2tsvnlpcUxoZEKsZzzz0X27Ztyxo7+E3fk02aNCnr8datW2PJkiUlu55+dEw/0qXc/QCAQpjPO2Z9lS7WVwAAAADwF/LEjsl300W+CwAAAD1PJeclW7ZsibPPPjtnQ+XBRo8eXfA15CVdZ0MiFWPhwoVZjz/84Q/HiSeemFA16dPQ0BCnnXZa1tjBr1kx6UfH9CNdyt0PACiE+bxj1lfpYn0FAAAAAH8hT+yYfDdd5LsAAADQ81RqXrJmzZo444wz4oUXXsgar67O3Q53KBsS5SVdZ0MiFWPRokVZjydMmJBQJel18Gty8GtWTPrROf1Il3L2AwAKYT7vnPVVulhfAQAAAMB+8sTOyXfTRb4LAAAAPUsl5iXPPPNMjBkzJjZv3pw1/p73vCduv/32nOd/9KMfPaTryUu6xoZEKkJzc3POTeTcc89NqJr0Ou+887Ieb968OZqbm4t+Hf3Ij36kS7n6AQCFMJ/nx/oqXayvAAAAAECemC/5brrIdwEAAKDnqMS8ZMGCBXHhhRfG9u3bs8br6+vjv/7rv6Jfv34548cee+whXVNe0jU2JFIRXnnllchkMlljJ510UkLVpNeQIUOyHre2tsarr75a9OvoR370I13K1Q8AKIT5PD/WV+lifQUAAAAA8sR8yXfTRb4LAAAAPUcl5SWtra0xbdq0uOaaa2Lfvn1ZXzvjjDNi+fLlccopp8SyZcuyvjZ69OhDvra8pGtsSKQirF+/PuvxgAED4vDDD0+omvQ64ogj4phjjskaO/i1Kwb9yI9+pEu5+gEAhTCf58f6Kl2srwAAAABAnpgv+W66yHcBAACg56iUvGTXrl1x6aWXxje/+c02v/7www/HgAEDIiJKsiFRXtI1NiRSETZs2JD1ePDgwQlVkn4H78ouxQ1QP/KnH+lSjn4AQCHM5/mzvkoX6ysAAAAAejp5Yv7ku+ki3wUAAICeoVLykrfeeit2797d7tdPOumkuPDCC+ONN96I3/zmN1lfK8aGxAh5SVfYkEhFeOONN7IeDxw4MKFK0u/444/Pevzmm28W/Rr6kT/9SJdy9AMACmE+z5/1VbpYXwEAAADQ08kT8yffTRf5LgAAAPQMlZKXHH/88fEf//Ef8eSTT0Z9fX2bz3nqqafi6KOPzhrr27dvjBgxomg1vJu8pH02JFIR3n777azH/fr1S6iS9Dv4tTn4tSsG/ciffqRLOfoBAIUwn+fP+ipdrK8AAAAA6OnkifmT76aLfBcAAAB6hjTnJfv27Yt9+/YdeFxVVRXjxo2LtWvXxsyZM/M6x6hRo6K2trYo9chL8leTdAGQj+bm5qzHvXv3TqiS9Kurq8t6XIoboH7kTz/SpRz9AIBCmM/zZ32VLtZXAAAAAPR08sT8yXfTRb4LAAAAPUPSecmePXti5cqVWceaNWtix44d0dLSEhERtbW1cfjhh8eHPvShGDFiRIwYMSI+8IEP5HX+0aNHF61WeUn+bEikIlVX++We7UnitdGP9ulHunhtAKgU5qz2WV+li9cGAAAAALLJzNon300Xrw0AAAD0TOXKBFasWBH3339//Mu//Eu89dZbHT63paUl3nrrrVi6dGksXbq0S9cp5oZEeUn+bEgEAAAAAAAAAAAAAAAAoGB79+6N73//+3H33XfHihUrin7+T37yk7F48eKs3/r40Y9+tOjXoXM2JAIAAAAAAAAAAAAAAABQkGXLlsV1110XK1euLNk1fvrTn8bQoUPjve99byxbtizq6+vj2GOPLdn1aJ8NiQAAAAAAAAAAAAAAAAB0yZtvvhm33HJL3HfffR0+76STTooRI0YcOI477rioq6uLiIjm5uZ4/fXXY+XKlfG1r30t6zcgHuxXv/pVREScd955MWzYsOL9QegSGxIBAAAAAAAAIA8tLS1t/jsAAAAAAOkm3y2+FStWxKc+9al4/fXX2/z6wIED44orrojPf/7z0dDQ0OG5Ghsb48gjj4xbb701r2s/88wzsXbt2rj88stj5MiRXS2dQ1SddAEAAAAAAAAAkFYrVqyIKVOmxOmnnx4DBgw4MD5gwIA4/fTTY8qUKbFy5coEKwQAAAAAoC3y3dJ56qmn4swzz2xzM+KwYcPiZz/7Wbz66qtx2223dboZMSIik8nEmDFjcsbvuOOO+NnPftbmb0N8/fXX48wzz4ynnnqqsD8EBbMhEQAAAAAAAAAOsmrVqhg7dmw0NjbGvHnz4sUXX4w9e/Yc+PqePXvixRdfjHnz5sXIkSNj7NixsWrVqgQrBgAAAAAgQr5baj/5yU9i3Lhx0dTUlDXev3//uP322+Pll1+OT3ziE9GrV6+8zzljxow2x2+44Yb4xCc+ES+//HLcfvvt0b9//6yvNzU1xUUXXRQ/+clPuv4HoWA2JAIAAAAAAADA/5PJZGL27NkxatSoWLp0ad7ft3Tp0hg1alTMnj07MplMCSsEAAAAAKAt8t3Se/7552P8+PHR0tKSNX7WWWfFunXr4qabbora2tounXPHjh0xa9asnPF169Yd+Pfa2tq46aabYt26dXHmmWdmPW/Pnj0xfvz4eP7557t0XQpnQyIAAAAAAAAAxP6/rDJ58uSYPn16zl+myEdLS0tMnz49Jk+e7C+tAAAAAACUkXy39P74xz/GZz7zmZzX97LLLotnnnkmBg4cWNB5GxoacsYaGxtj6NChOeMDBw6MxYsXx2WXXZY13tLSEp/5zGfiT3/6U0E10DXdekPiAw88EFVVVR0ef/M3f5N0maTQpk2bcn5Wamtr47jjjotLL700Xnzxxazn79ixI+rr66NPnz6xdu3aNs85Z86cqKqqiquvvrocf4RuRT/SKd++3HnnnVFVVRVXXnllu+f6+c9/HtXV1XH66afH3r17y/VHAIAez3yeLvoBAAAAyZszZ07Mnz//kM8zf/78mDNnThEqAmibPDFd9AMAAACSJ98trUwmExMnTozf/va3WeNXXXVVPPzww1FXV1fQeZctWxbbtm3LGV++fHm731NXVxcPP/xwXHXVVVnjv/3tb2PixIk2lJZBTdIFlNLIkSPjn/7pn9r82o9+9KNYs2ZNXHDBBWWuikrS0NAQn/vc5yIioqmpKV566aVYuHBhPPHEE7F48eIYO3ZsREQcfvjhcf/998e5554bn//852PZsmVRU/OXt9fq1atj5syZMWjQoLjjjjsS+bN0B/qRTp315Utf+lI8+eST8cADD8Qll1wSf/d3f5f1/Tt37owrr7wy6urq4qGHHsrqFQBQHubzdNEPAAAASMaqVati5syZRTvfzJkz42//9m9j+PDhRTsnwMHkiemiHwAAAJAM+W7pLViwIB577LGssbPPPjvuvffe6NWrV0HnzGQyMWbMmJzxuXPnRu/evTv83l69esW9994bGzdujOeee+7A+I9+9KO47777YuLEiQXVRH66dWo1cuTIGDlyZM74nj174q677oqampr4/Oc/X/7CqBiDBw+Or3zlK1ljs2fPjunTp8f/+l//K+um9fGPfzyuv/76uOuuu+Ib3/jGgcmspaUlLr/88mhpaYkf/OAHcfjhh5fzj9Ct6Ec65dOXBx54IIYPHx4TJ06MNWvWxJFHHnnguTfddFNs2rQp7rjjjvjgBz9Y5uoBgAjzedroBwAAACRj0qRJ0dLSUrTztbS0xKRJk2LJkiVFOyfAweSJ6aIfAAAAkAz5bmnt2rUrpk+fnjX2vve9L374wx8WvBkxImLGjBltjk+ZMiWv7+/Vq1f88Ic/jBEjRsRbb711YHz69Onx2c9+Nvr161dwbXSsOukCkvDEE0/Em2++GZ/61KdiwIABSZdDhfmHf/iHiIh46aWXcr42Z86cGDx4cHz961+PFStWRETEbbfdFitWrIjJkyfHOeecU85SewT9SKeD+zJo0KC48847Y8uWLXHdddcdeN6iRYvi3nvvjXPOOSe+9KUvJVIrANA283m66AcAAACU1ooVK2Lp0qVFP+/SpUtj5cqVRT8vQEfkiemiHwAAAFBa8t3Se+CBB7I2/EVE/OAHP4jjjjuu4HPu2LEjZs2alTO+bt26Lp3n+OOPj/vvvz9r7M0334wHH3yw4NroXI/ckHjfffdFRMTVV1+dcCVUspqa3F8w2q9fv3jggQdi3759cfnll8d//ud/xqxZs+Lkk0+O2bNnJ1Blz6Ef6fTuvlx55ZUxbty4WLhwYTzyyCPxpz/9Ka6++uo44ogj4gc/+EFUVVUlWCkA0B7zebroBwAAAJTGwX9ZoVLODdAReWK66AcAAACUhny3tPbt2xff+c53ssYuvPDCGDdu3CGdt6GhIWessbExhg4d2uVzXXTRRXHhhRdmjX3nO9+Jffv2FVwfHetxGxI3b94c/+f//J84/vjj4xOf+ETS5VCB3tnQeuaZZ7b59b/+67+Of/zHf4zVq1fHueeeGxERDz74YPTt27dsNfYk+pFO7fXl3nvvjaOOOiquv/76uOKKK+K1116LO++8MwYNGpREmQBAB8zn6aIfAAAAUFrLli2ryHMDtEWemC76AQAAAKUl3y2tJ598MjZu3Jg1NnXq1EM657Jly2Lbtm0548uXLy/4nDfddFPW4w0bNsS///u/F3w+Opb7K8W6uR/84AfR2toaV1xxRfTq1Svpcrosk8nErl27ki6j7FpaWhK57oYNG+IrX/lKREQ0NTXFSy+9FM8++2wMGDAgvvWtb7X7fTNnzoz58+fH7t27Y9KkSXHGGWeUqeJcLS0t0dTUVPRzJkE/2j9nkrrSlwEDBsQ999wT48ePjyeffDLGjRsXV155ZQJV71eKfgBwaN59X+5J92jzeeGsr7p/PwAASqWnfv4AIFdLS0usWrWqZOdftWpV/PnPf876zVjQHfXU9ZU8sXDy3e7fDwCAUumpnz8AyCXf7dyh5iWPPvpo1uPGxsY455xzCj5fJpOJMWPG5IzPnTs3evfuXfB5P/7xj8fIkSNjxYoVB8b+7d/+LS6++OKCz0kHMj3Ivn37Mh/4wAcyVVVVmVdeeSXpcgqyc+fOTET0+OOLX/xiSV/nV199td1rH3vssZn169d3+P0zZ8488PzBgwdnmpqaSlrvu33xi1/Uj4PoR2kcSl8+8pGPZCIis3bt2rLU+o4k+uFwOBwORyGH+bx91ldt60n9cDgcDofD4XA4HA6Hw+FwONJ8yBPbJ99tW0/qh8PhcDgcDofD4XA4HI7kj67mJYMGDcr6/n/+538+pExi+vTpbdZVDN/73veyzllfX9+l7z84LylXtlSJqqMHWbx4cfz2t7+Nj3/843HCCSckXQ4V4IILLohMJhOZTCa2bt0a3/rWt2Lr1q0xbty42LlzZ5vf89JLL8U3vvGNOPnkk2Pq1KmxYcOGmD59epkr7570I50K6Uvfvn2z/gkAJMt8ni76AQAAAADkS56YLvoBAAAAdCd/+MMfYvPmzVljZ555ZsHn27FjR8yaNStnfN26dQWf890Orm3Tpk2xZcuWopybbJX7O0MLcN9990VExNVXX51wJYXr169fuwFld3bjjTfGggULEq3h6KOPjqlTp8af//zn+PrXvx633npr3HnnnVnPaW5ujssvvzwymUw8+OCDcdppp8XTTz8d8+bNi/Hjx8fYsWPLXvfEiRPjjjvuKOo59aNw3bUf78inL2lSin4AcGiamppiwIABERGxZcuW6N+/f8IVlYf5vHDWV+lifQUAVJKe+vkDgFwtLS0xYMCA2LNnT0nOX1dXF1u2bImamh71n+fpgXrq+kqeWDj5brrIdwGAStJTP38AkEu+27lDyUt+8YtfZD0+/PDD44Mf/GDBtTQ0NOSMNTY2xtChQws+57udcsopcdhhh2Xtu/rFL34R48aNK8r5+YvKfUd00ZtvvhlPPvlkvO9974uLL7446XIKVlVV1SMXzbW1tUmXcMCXv/zluP/+++N73/te3HDDDVFfX3/ga7feemusXbs2pk+fHmeccUZERDz44IPxkY98JK666qpYtWpV9OvXr6z11tbWFv1nRj8K19378Y6O+pImpegHAMXTv3//HnOfNp8XzvoqXayvAIBK1ZM+fwDQtuHDh8eLL75YsnO/5z3vKcm5Ia160vpKnlg4+W66yHcBgErVkz5/ANA2+W7HDiUvWblyZdbj008/PXr16lXQuZYtWxbbtm3LGV++fHlB52tLr1694vTTT49nn332wNiKFStsSCyB6qQLKJeHH3449uzZE5/73Oeirq4u6XKoYH379o1p06ZFS0tLfO1rXzsw/vzzz8d3vvOdOPXUU+MrX/nKgfGRI0fGjBkzYuPGjTFt2rQEKu7e9COd2usLAFA5zOfpoh8AAABQWqNHj67IcwO0RZ6YLvoBAAAApSXfLZ0dO3ZkPR44cGBB58lkMjFmzJic8blz50bv3r0LOmd7Dq7x3b8tkeLpMRsSv//970dExNVXX51wJXQH11xzTbz//e+Phx56KDZu3BhNTU1xxRVXRK9eveLBBx/MuSHOmDEjGhsbY/78+fHcc88lVHX3pR/pdHBfAIDKYz5PF/0AAACA0rnqqqsq8twA7ZEnpot+AAAAQOnId0tnxIgR8elPfzouuuiiOP/88+PUU08t6DwzZsxoc3zKlCmHUl6bhg8fHueff35cdNFF8elPfzpGjBhR9GvQQzYkvvDCC/HLX/4yPvKRjxT8ww/v1qdPn5g+fXrs3bs3vvrVr8bNN98cGzZsiFtvvTUaGxtznl9TUxMPPvhg1NbWxpVXXhlNTU0JVN196Uc6HdwXAKDymM/TRT8AAACgdEaOHBlnnXVW0c971lln+csOQCLkiemiHwAAAFA68t3S+dznPhePPPJIPPHEE7Fo0aK46aabunyOHTt2xKxZs3LG161bV4wSc9x0002xaNGieOKJJ+KRRx6Jz372syW5Tk9Xk3QB5fCRj3wkMplM0mVQQerr6zv9mZk0aVJMmjTpwOP58+d3+PxTTz01mpubi1JfT6Mf6VRIX97x85//vERVAQBdYT5PF/0AAACAZN11110xatSoaGlpKcr5amtrO/1vVgCFkiemi34AAABAsuS76dXQ0JAz1tjYGEOHDk2gGoqlR/yGRAAAAAAAAADoyPDhw+O2224r2vluu+22OPXUU4t2PgAAAAAA2ibfTadly5bFtm3bcsaXL1+eQDUUkw2JAAAAAAAAABAR06ZNi+uvv/6QzzNp0qSYNm1aESoCAAAAACAf8t10yWQyMWbMmJzxuXPnRu/evROoiGKyIREAAAAAAAAAIqKqqirmzZsXs2bNitra2i5/f21tbcyaNSu++93vRlVVVQkqBAAAAACgLfLddJkxY0ab41OmTClzJZSCDYkAAAAAAAAA8P9UVVXFLbfcEi+++GKcddZZeX/fWWedFS+99FLccsst/rIKAAAAAEAC5LvpsGPHjpg1a1bO+Lp16xKohlKoSboAAAAAAAAAAEib4cOHx5IlS2LlypVx//33x7Jly2LlypWxZ8+eiIioq6uL4cOHx+jRo+Oqq66KESNGJFwxAAAAAAAR8t2kNTQ05Iw1NjbG0KFDE6iGUrAhEQAAAAAAAADaMWLEiJg7d25EROzduze2b98eERFHHHFE1NT4T+4AAAAAAGkl3y2/ZcuWxbZt23LGly9fnkA1lIp3DwAAAAAAAADkoaamJt73vvclXQYAAAAAAF0k3y29TCYTY8aMyRmfO3du9O7dO4GKKJXqpAsAAAAAAAAAAAAAAAAAoHLNmDGjzfEpU6aUuRJKzYZEAAAAAAAAAAAAAAAAAAqyY8eOmDVrVs74unXrEqiGUrMhEQAAAAAAAAAAAAAAAICCNDQ05Iw1NjbG0KFDE6iGUrMhkYrU2tqadAmplcRrox/t04908doAUCnMWe2zvkoXrw0AAAAAZJOZtU++my5eGwAAAOiZSpEJ/OpXv4pt27bljC9fvrzo1yoleUn+bEikItTV1WU93rNnT0KVpF9zc3PW4z59+hT9GvqRP/1Il3L0AwAKYT7Pn/VVulhfAQAAANDTyRPzJ99NF/kuAAAA9AylzksymUzccMMNOeNz586N3r17F/VapSYvyZ8NiVSEg9/Eu3btSqiS9Dv4tSnFDVA/8qcf6VKOfgBAIczn+bO+ShfrKwAAAAB6Onli/uS76SLfBQAAgJ6h1HnJ1q1b49e//nXW2Hvf+96YMmVKUa9TDvKS/NmQSEU46qijsh7/7ne/S6iS9HvttdeyHh955JFFv4Z+5E8/0qUc/QCAQpjP82d9lS7WVwAAAAD0dPLE/Ml300W+CwAAAD1DqfOSAQMGxNq1a2PmzJlRV1cX/fv3j1WrVhX1GuUiL8mfDYlUhMGDB2c93rBhQ0KVpN/69euzHg8ZMqTo19CP/OlHupSjHwBQCPN5/qyv0sX6CgAAAICeTp6YP/luush3AQAAoGcoR17St2/f+OpXvxpr1qyJhx56KI4//viiX6Mc5CX5syGRinDwm3jLli2xffv2hKpJr+3bt8fWrVuzxkpxA9SP/OhHupSrHwBQCPN5fqyv0sX6CgAAAADkifmS76aLfBcAAAB6jnLmJQ0NDXHJJZeU5NylJi/pGhsSqQgnnnhiVFVVZY0dvPOY3Nekuro6TjjhhKJfRz/yox/pUq5+AEAhzOf5sb5KF+srAAAAAJAn5ku+my7yXQAAAOg55CX5kZd0jQ2JVIS6uroYNGhQ1tjixYsTqia9nnnmmazHgwYNirq6uqJfRz/yox/pUq5+AEAhzOf5sb5KF+srAAAAAJAn5ku+my7yXQAAAOg55CX5kZd0jQ2JVIwLLrgg6/HChQsTqiS9Dn5NDn7Nikk/Oqcf6VLOfgBAIcznnbO+ShfrKwAAAADYT57YOfluush3AQAAoGeRl3ROXtI1NiRSMSZMmJD1+KWXXopXXnkloWrSZ+PGjfHyyy9njR38mhWTfnRMP9Kl3P0AgEKYzztmfZUu1lcAAAAA8BfyxI7Jd9NFvgsAAAA9j7ykY/KSrrMhkYrxsY99LI4++uissXnz5iVUTfrcddddWY+POeaYGDt2bMmupx8d0490KXc/AKAQ5vOOWV+li/UVAAAAAPyFPLFj8t10ke8CAABAzyMv6Zi8pOtsSKRi1NTUxPjx47PG5s2bF7/85S8Tqig9Vq9enTMZXHLJJVFTU1Oya+pH+/QjXZLoBwAUwnzePuurdLG+AgAAAIBs8sT2yXfTRb4LAAAAPZO8pH3yksJUZTKZTNJFQL42btwYH/rQh6K5ufnA2NixY+PZZ5+N6uqeub+2tbU1zj777Fi6dOmBsbq6ulizZk00NDSU9Nr6kUs/0iXJfgBQmKampjjssMMiImLnzp3Rv3//hCsqL/N5LuurdLG+AgC6k57++QMAoNh6+vpKnphLvpsu8l0AoDvp6Z8/AKAQ8pJc8pLC9cyfGCpWQ0ND3HzzzVljS5YsiWuvvTZaW1sTqio5ra2tce2112bd/CIipk2bVpabn35k0490SbofAFAI83m2pOdz/ciWdD8AAAAAIM3kidmSzhP1I1vS/QAAAACSJy/JJi85NH5DIhVn165dccopp8TmzZuzxidOnBh33313j9mZ/c7Nb8GCBVnj9fX1sXbt2ujbt29Z6tCP/fQjXdLSDwC6zv/Bznz+jrTM5/qxX1r6AQBQTD5/AAAUl/WVPPEdackT9WO/tPQDAKCYfP4AgMLIS/aTlxy6nvGTQrfSr1+/uPfee6OmpiZrfMGCBXH22WfH6tWrE6qsfFavXh1nn312zs2vpqYm7rnnnrLe/PRDP9ImTf0AgEKYz9M1n+tHuvoBAAAAAGkmT0xXnqgf6eoHAAAAkDx5ibykWGxIpCKdf/758eijj+bcBJcuXRqNjY1x4403xsaNGxOqrnQ2btwYN954YzQ2Nub8Wtiampp49NFH4/zzzy97XfqhH2mQ1n4AQCHM5+maz/UjXf0AAAAAgDSTJ6YrT9SPdPUDAAAASJ68RF5SDFWZTCaTdBFQqB//+Mdx6aWXxt69e9v8+mmnnRYTJkyI8847L4YMGRJHHHFEmSs8NNu3b4/169fHM888EwsXLoyXX365zee9c/O7+OKLy1xhNv3YTz/Ko9L6AUB+mpqa4rDDDouIiJ07d0b//v0TrihZ5vP90jKf68d+aekHAMCh8vkDAKC4rK+yyRP3S0ueqB/7paUfAACHyucPADh08pL95CWFsSGRivf000/HF77whdi0aVOnzz3mmGNiyJAhcfzxx0e/fv2irq4uqqvT8YtCW1tbo7m5OXbt2hWvvfZarF+/PrZu3drp99XX18c999yTmp3Y+qEfpdBd+gFA5wTGuczn6ZrP9SNd/QAAOBQ+fwAAFJf1VS55YrryRP1IVz8AAA6Fzx8AUBzyEnlJoWxIpFvYvXt3zJ49O+bMmRPNzc1Jl1MWdXV1MW3atLjllluib9++SZeTRT/0I2lp7gcAHRMYt818nq75XD/S1Q8AgEL5/AEAUFzWV22TJ6YrT9SPdPUDAKBQPn8AQPHIS+QlhbAhkW5l48aNcfvtt8djjz0W27ZtS7qckjjmmGPikksuialTp0ZDQ0PS5XRIP9JFPwCoBALjjpnP00U/AAAqm88fAADFZX3VMXliuugHAEBl8/kDAIpPXkJX2JBIt7R3795YsmRJLFy4MBYtWhSbNm2KSv1Rr6qqivr6+rjgggtiwoQJMXbs2KipqUm6rC7Rj3TRDwDSTGCcH/N5uugHAEBl8vkDAKC4rK/yI09MF/0AAKhMPn8AQOnIS8iHDYn0CM3NzfHqq6/G+vXrY/369fHmm2/G22+/HW+//XbSpWXp06dP9OnTJ4488sgYMmRIDBkyJE444YSoq6tLurSi0o900Q8A0kRgXJhSzectLS2xYMGCiIiYOHFi1NbWHtL5esp8bn0FAFAZfP4AACgu66vCyHfTRb4LAFAZfP4AgPKRl9AWGxIBAIDUEBini34AANCdWe8CABSX9VW66AcAAN2Z9S4AQLKqky4AAAAAAAAAAAAAAAAAAEg/GxIBAAAAAAAAAAAAAAAAgE7ZkAgAAAAAAAAAAAAAAAAAdMqGRAAAAAAAAAAAAAAAAACgUzYkAgAAAAAAAAAAAAAAAACdsiERAAAAAAAAAAAAAAAAAOiUDYkAAAAAAAAAAAAAAAAAQKdsSAQAAAAAAAAAAAAAAAAAOmVDIgAAAAAAAAAAAAAAAADQKRsSAQAAAAAAAAAAAAAAAIBO2ZAIAAAAAAAAAAAAAAAAAHTKhkQAAAAAAAAAAAAAAAAAoFM2JAIAAAAAAAAAAAAAAAAAnbIhEQAAAAAAAAAAAAAAAADolA2JAAAAAAAAAAAAAAAAAECnbEgEAAAAAAAAAAAAAAAAADplQyIAAAAAAAAAAAAAAAAA0CkbEgEAAAAAAAAAAAAAAACATtmQCAAAAAAAAAAAAAAAAAB0qibpAqAcmpub45VXXon169fHhg0b4o033oi33347mpubky4tS11dXfTp0yeOOuqoGDx4cAwZMiROPPHEqKurS7q0otKPdNEPAAAAANKsVPlVS0vLgX+/8cYbo7a29pDOJ78CAAAAAMgm3wWAyme/AW2pymQymaSLgGLbu3dvPPfcc7Fw4cJYtGhRbN68OSr1R72qqioGDRoUF1xwQUyYMCE+9rGPRU1NZe0l1o900Q8A0qypqSkOO+ywiIjYuXNn9O/fP+GKejb9AAAgCfIrAIDKJE9MF/0AACAJ8l0AqHzmc/JhQyLdyoYNG+Lb3/52PPbYY7Ft27akyymJo48+OsaPHx9Tp06NhoaGpMvpkH6ki34AUAn8BYl00Q8AAMpJfgUAUNnkiemiHwAAlJN8FwAqn/mcrrAhkW5h165dMXv27JgzZ07s2bMn6XLKoq6uLm6++ea45ZZbol+/fkmXk0U/9CNpae4HAB3zFyTSRT8AACgH+ZX8CgDoHuSJ6aIfAACUg3xXvgtA5TOfm88LYUMiFe/pp5+Oa665JjZv3tzpcwcMGBCDBw+OgQMHRr9+/aJ3795RXV1dhio719raGnv27Ildu3bF7373u9iwYUNs2bKl0++rr6+Pe+65J84///wyVNk5/dCPUugu/QCgc/6CRLroBwAApSa/kl8BAN2HPDFd9AMAgFKT78p3Aah83W0+X716dfz+97+PlpYW83mJ2ZBIRfvxj38cl156aezdu7fNr3/4wx+OCRMmxLnnnhtDhgyJI444oswVHprt27fH+vXrY/HixfHoo4/Gyy+/3Obzampq4tFHH42LL764zBVm04/99KM8Kq0fAOTHX5BIF/0AAKCU5Ff7ya8AgO5Cnpgu+gEAQCnJd/eT7wJQybrTfN7a2hpf/vKXY86cOfH444/HxRdfbD4vMRsSqVjt3fx69eoVkydPjsmTJ8eJJ56YUHWlsXHjxrjrrrti3rx5sW/fvqyvJX0T1A/9SFqa+wFA/vwFiXTRDwAASkV+Jb8CALofeWK66AcAAKUi35XvAlD5utN8vnv37rj88svjRz/6UURE/P73v49jjz0253nm8+KyIZGK9PTTT8cnP/nJnJvf2LFjY/78+TFs2LCEKiuPX/7yl3H99dfHkiVLssZramripz/9adl/Xax+6EeapK0fAHSNvyCRLvoBAEApyK/kVwBA9yRPTBf9AACgFOS78l0AKl93ms+3bNkS48aNixdeeCEiIurr6+PVV1/t8HvM58VhQyIVZ9euXXHKKafE5s2bs8YnTpwYd999d1RXVydUWXm1trbGtddeGwsWLMgar6+vj7Vr10bfvn3LUod+7Kcf6ZKWfgDQdf6CRLroBwAAxSa/2k9+BQB0R/LEdNEPAACKTb67n3wXgErWnebzNWvWxCc/+cmsP8tll10W//qv/9rp95rPD13l/KTA/zN79uxucfM7VNXV1XH33XfHxIkTs8Y3bdoUs2fPLlsd+rGffqRLWvoBAAAAQDb51X7yKwAAAACg0sh395PvAlDJust8vnjx4hgzZkzOn2X06NF5fb/5/ND5DYlUlA0bNsSwYcOiubn5wNjYsWPj2WefraibXzG1trbG2WefHUuXLj0wVldXF2vWrImGhoaSXls/culHuiTZDwAK4//YnC76AQBAMcmvcsmvAIDuRJ6YLvoBAEAxyXdzyXcBqDTdZT6/77774rrrrou9e/fmfO2///u/Y9SoUXmfy3xeuMr5iYGI+Pa3v5118+vVq1fMnz+/om5+xVZdXR3z58+PXr16HRhrbm6O22+/veTX1o9c+pEuSfYDAAAAgGzyq1zyKwAAAACgEsh3c8l3Aag0lT6ft7a2xrRp02LixIltbkbs27dvjBgxokvnNJ8XrjJ+aiAi9u7dG4899ljW2OTJk2PYsGEJVZQep556akyePDlr7PHHH2/zJlss+tE+/UiXJPoBAAAAQDb5VfvkVwAAAABAmsl32yffBaBSVPp8vnv37rj00kvjm9/8ZrvPGTVqVNTW1nb53ObzwtiQSMV47rnnYtu2bVljB7/pe7JJkyZlPd66dWssWbKkZNfTj47pR7qUux8AAAAAZJNfdUx+BQAAAACklXy3Y/JdACpBJc/nW7ZsibPPPjtnQ+XBRo8eXfA1zOddZ0MiFWPhwoVZjz/84Q/HiSeemFA16dPQ0BCnnXZa1tjBr1kx6UfH9CNdyt0PAAAAALLJrzomvwIAAAAA0kq+2zH5LgCVoFLn8zVr1sQZZ5wRL7zwQtZ4dXXudrhD2ZBoPu86GxKpGIsWLcp6PGHChIQqSa+DX5ODX7Ni0o/O6Ue6lLMfAAAAAGSTX3VOfgUAAAAApJF8t3PyXQDSrhLn82eeeSbGjBkTmzdvzhp/z3veE7fffnvO8z/60Y8e0vXM511jQyIVobm5Oecmcu655yZUTXqdd955WY83b94czc3NRb+OfuRHP9KlXP0AAAAAIJv8Kj/yKwAAAAAgbeS7+ZHvApBmlTifL1iwIC688MLYvn171nh9fX3813/9V/Tr1y9n/Nhjjz2ka5rPu8aGRCrCK6+8EplMJmvspJNOSqia9BoyZEjW49bW1nj11VeLfh39yI9+pEu5+gEAAABANvlVfuRXAAAAAEDayHfzI98FIM0qaT5vbW2NadOmxTXXXBP79u3L+toZZ5wRy5cvj1NOOSWWLVuW9bXRo0cf8rXN511jQyIVYf369VmPBwwYEIcffnhC1aTXEUccEcccc0zW2MGvXTHoR370I13K1Q8AAAAAssmv8iO/AgAAAADSRr6bH/kuAGlWKfP5rl274tJLL41vfvObbX794YcfjgEDBkRElGRDovm8a2xIpCJs2LAh6/HgwYMTqiT9Dt6VXYoboH7kTz/SpRz9AAAAACCb/Cp/8isAAAAAIE3ku/mT7wKQVpUyn7/11luxe/fudr9+0kknxYUXXhhvvPFG/OY3v8n6WjE2JEaYz7vChkQqwhtvvJH1eODAgQlVkn7HH3981uM333yz6NfQj/zpR7qUox8AAAAAZJNf5U9+BQAAAACkiXw3f/JdANKqUubz448/Pv7jP/4jnnzyyaivr2/zOU899VQcffTRWWN9+/aNESNGFK2GdzOft8+GRCrC22+/nfW4X79+CVWSfge/Nge/dsWgH/nTj3QpRz8AAAAAyCa/yp/8CgAAAABIE/lu/uS7AKRVmufzffv2xb59+w48rqqqinHjxsXatWtj5syZeZ1j1KhRUVtbW5R6zOf5q0m6AMhHc3Nz1uPevXsnVEn61dXVZT0uxQ1QP/KnH+lSjn4AAAAAkE1+lT/5FQAAAACQJvLd/Ml3AUirpOfzPXv2xMqVK7OONWvWxI4dO6KlpSUiImpra+Pwww+PD33oQzFixIgYMWJEfOADH8jr/KNHjy5arebz/NmQSEWqrvbLPduTxGujH+3Tj3Tx2gAAAAAkT0bTPq8NAAAAAJBmMsz2eW0AqBTlmrNWrFgR999/f/zLv/xLvPXWWx0+t6WlJd56661YunRpLF26tEvXKeaGRPN5/mxIBAAAAAAAAAAAAAAAAKBge/fuje9///tx9913x4oVK4p+/k9+8pOxePHirN/6+NGPfrTo16FzNiQCAAAAAAAAAAAAAAAAUJBly5bFddddFytXrizZNX7605/G0KFD473vfW8sW7Ys6uvr49hjjy3Z9WifDYkAAAAAAAAAAAAAAAAAdMmbb74Zt9xyS9x3330dPu+kk06KESNGHDiOO+64qKuri4iI5ubmeP3112PlypXxta99Les3IB7sV7/6VUREnHfeeTFs2LDi/UHoEhsSAQCA1GhpaWnz30mGfgAAAAAA+ZInpot+AAAAAFBqK1asiE996lPx+uuvt/n1gQMHxhVXXBGf//zno6GhocNzNTY2xpFHHhm33nprXtd+5plnYu3atXH55ZfHyJEju1o6h6g66QIAAICebcWKFTFlypQ4/fTTY8CAAQfGBwwYEKeffnpMmTIlVq5cmWCFPYt+AAAAAAD5kiemi34AAAAAUC5PPfVUnHnmmW1uRhw2bFj87Gc/i1dffTVuu+22TjcjRkRkMpkYM2ZMzvgdd9wRP/vZz9r8bYivv/56nHnmmfHUU08V9oegYDYkAgAAiVi1alWMHTs2GhsbY968efHiiy/Gnj17Dnx9z5498eKLL8a8efNi5MiRMXbs2Fi1alWCFXdv+gEAAAAA5EuemC76AQAAAEA5/eQnP4lx48ZFU1NT1nj//v3j9ttvj5dffjk+8YlPRK9evfI+54wZM9ocv+GGG+ITn/hEvPzyy3H77bdH//79s77e1NQUF110UfzkJz/p+h+EgtmQCAAAlFUmk4nZs2fHqFGjYunSpXl/39KlS2PUqFExe/bsyGQyJaywZ9EPAAAAACBf8sR00Q8AAAAAyu3555+P8ePHR0tLS9b4WWedFevWrYubbropamtru3TOHTt2xKxZs3LG161bd+Dfa2tr46abbop169bFmWeemfW8PXv2xPjx4+P555/v0nUpnA2JAABA2WQymZg8eXJMnz4958NoPlpaWmL69OkxefJkf0miCPQDAAAAAMiXPDFd9AMAAACAcvvjH/8Yn/nMZ3LyqMsuuyyeeeaZGDhwYEHnbWhoyBlrbGyMoUOH5owPHDgwFi9eHJdddlnWeEtLS3zmM5+JP/3pTwXVQNd0+w2JmUwmHn/88TjnnHPif/yP/xH9+vWLk08+Ob7whS/EK6+8knR5pNSmTZuiqqoq66itrY3jjjsuLr300njxxReznr9jx46or6+PPn36xNq1a9s855w5c6KqqiquvvrqcvwRuhX9SKd8+3LnnXdGVVVVXHnlle2e6+c//3lUV1fH6aefHnv37i3XHwGABMyZMyfmz59/yOeZP39+zJkzpwgV9Wz6AQBAdya/AgAoLnliuugHAADdmXwXANInk8nExIkT47e//W3W+FVXXRUPP/xw1NXVFXTeZcuWxbZt23LGly9f3u731NXVxcMPPxxXXXVV1vhvf/vbmDhxov8BVxl0+w2JU6dOjfHjx8evf/3r+Pu///uYPHlynHDCCbFgwYIYOXJk/PKXv0y6RFKsoaEh/umf/in+6Z/+KW644YY4+eSTY+HChTFmzJhYsmTJgecdfvjhcf/998eePXvi85//fM4HltWrV8fMmTNj0KBBcccdd5T7j9Ft6Ec6ddaXL/3/7d17jNTl+Tfge9kTi4qpJ0ylAbtQVxvANR4iAqK2UJMGo4bGtMaIldbDlkqhLhRL0RpXY0vZ4hGMgjE1lZpqbdKiprZSAyZiOVSoga1Y+UPY2FQW0HWR+f3BK6/DADMMc/jO7nUlT8w8u/PMzd4wD3zinfnhD2P8+PGxZMmSeOGFFzKev3PnzpgyZUrU19fHk08+GTU1NWX4VQBQCuvWrYu5c+cW7Ly5c+fGunXrCnZeX6MfAAD0FfIrAICjJ09MFv0AAKCvkO8CQHIsXrw4nn322bS98ePHx6JFi6K6ujqvM1OpVIwePTpjv729Perq6g773Orq6li0aFFcfPHFafu/+93v4rHHHsurHnLXqwcS33///ViwYEEMGTIkNm7cGA8//HDcd9998ec//zl++ctfRldXV8yfP7/cZZJgw4YNi3nz5sW8efPi/vvvj7/85S/R1tYWPT098dOf/jTtey+99NK49dZb44033oh77rln/35PT09cd9110dPTE0888UQcd9xxpf5l9Br6kUzZ+lJVVRVLliyJgQMHxtSpU+ODDz5Ie/6MGTNiy5Yt0dbWFmeeeWaZfhUAlEJLS0v09PQU7Lyenp5oaWkp2Hl9jX4AANBXyK8AAI6ePDFZ9AMAgL5CvgsAybB79+6YPXt22t4JJ5wQTz31VN7DiBERc+bMOej+tGnTcnp+dXV1PPXUU3HCCSek7c+ePTt2796dd11k16sHErds2RJ79+6Niy66KI4//vi0r33zm9+MiDjox3rC4Xz3u9+NiIjVq1dnfO2+++6LYcOGxd133x1r1qyJiIi77ror1qxZEz/4wQ/ikksuKWWpfYJ+JNOBfRkyZEgsWLAgtm3bFjfffPP+71u+fHksWrQoLrnkkvjhD39YlloBKI01a9bEihUrCn7uihUrYu3atQU/t7fTDwAA+jr5FQBA7uSJyaIfAAD0dfJdACi9JUuWxH//+9+0vSeeeCJOO+20vM/s6uqKtra2jP2NGzce0TmDBw+Oxx9/PG3vgw8+iKVLl+ZdG9n16oHE4cOHR11dXbz22muxY8eOtK/98Y9/jIiIyy67rByl0Qsc7GPbBwwYEEuWLIlPP/00rrvuuvj73/8ebW1tccYZZ8S9995bhir7Dv1Ips/3ZcqUKTFp0qRYtmxZPP300/G///0vbrzxxhg4cGA88cQTUVVVVcZKASi2A/+xVyln91b6AQAA+8ivAACykycmi34AAMA+8l0AKI1PP/005s+fn7Z3+eWXx6RJk47q3MbGxoy95ubmaGpqOuKzrrjiirj88svT9ubPnx+ffvpp3vVxeL16IPHEE0+Me++9N/7zn/9EU1NT3HzzzdHa2hrf+MY3orW1NW655ZZoaWkpd5lUmMceeywiIsaMGXPQr1900UXxox/9KNavXx9f+9rXIiJi6dKl0dDQULIa+xL9SKZD9WXRokVx0kknxa233hrXX399bN26NRYsWBBDhgwpR5kAlNDKlSsr8uzeSj8AAOjr5FcAALmTJyaLfgAA0NfJdwGgtJ5//vno6OhI25s5c+ZRnbly5cro7OzM2F+1alXeZ86YMSPt8ebNm+MPf/hD3udxeJkfKdbLTJ8+PU477bS48cYb45FHHtm/P2bMmPj2t7990E9VS7JUKhW7d+8udxkl19PTU5bX3bx5c8ybNy8iInbt2hWrV6+OV155JQYNGhT333//IZ83d+7cePDBB+Ojjz6KlpaWuOCCC0pUcaaenp7YtWtXwc8sB/049JnldCR9GTRoUDz66KNx9dVXx/PPPx+TJk2KKVOmlKHqfYrRDwAy9fT0xLp164p2/rp16+LDDz+suL/bl4t+AABQavKr/MmvAIBykycmi34AAFBq8t38yXcBSIqjvc+feeaZtMfNzc1xySWX5H1eKpWK0aNHZ+y3t7dHXV1d3udeeumlcfbZZ8eaNWv27/32t7+NK6+8Mu8zOYxUL3fnnXemamtrU21tban33nsv1dXVlVqxYkXq3HPPTdXU1KSef/75cpd4RHbu3JmKiD6/brnllqL+nN95551Dvvapp56a2rRp02GfP3fu3P3fP2zYsNSuXbuKWu/n3XLLLfpxAP0ojqPpy/nnn5+KiNSGDRtKUutnytEPy7Isy7Isy7Isy7IsK33Jrw5NfmVZlmVZlmVZlmVZlmVZVpKXfPfQ5LuWZVlWpawjvc+HDBmS9vyHH374qO7M2bNnH7SuQnjooYfSzhw6dOgRPf/A+7xUf/epRP2iF3v55ZfjZz/7WbS0tMSsWbNi8ODBceyxx8aYMWPihRdeiNra2oyP5ITPmzhxYqRSqUilUrF9+/a4//77Y/v27TFp0qTYuXPnQZ+zevXquOeee+KMM86ImTNnxubNm2P27Nklrrx30o9kyqcvDQ0Naf8FAAAAgGKRXwEAAAAAVCb5LgCU1/vvvx/vvvtu2t6YMWPyPq+rqyva2toy9jdu3Jj3mZ93YG1btmyJbdu2FeRs0tWUu4Bi+tOf/hQRcdCPAj311FOjqakp/vGPf8TOnTvj2GOPLXV5eRkwYMAh/wLdm02fPj0WL15c1hpOPvnkmDlzZnz44Ydx9913xx133BELFixI+57u7u647rrrIpVKxdKlS+Occ86JF198MRYuXBhXX311jBs3ruR1T506NX71q18V9Ez9yF9v7cdnculLkhSjHwBk6unpiUGDBsUnn3xSlPPr6+tj27ZtUVPTq/95UzD6AQBAqcmv8ie/AgDKTZ6YLPoBAECpyXfzJ98FICmO5j5//fXX0x4fd9xxceaZZ+ZdS2NjY8Zec3NzNDU15X3m55111llx7LHHps1dvf766zFp0qSCnM//16sTxM8C2M7OzoN+vbOzM/r16xe1tbWlLOuoVFVVxTHHHFPuMkouST36yU9+Eo8//ng89NBDcdttt8XQoUP3f+2OO+6IDRs2xOzZs+OCCy6IiIilS5fG+eefHzfccEOsW7cuBgwYUNJ6a2trC/57Rj/y19v78ZnD9SVJitEPAA5u5MiR8cYbbxTt7OOPP74oZ/dW+gEAQCnJr/InvwIAkkCemCz6AQBAKcl38yffBSApjuY+X7t2bdrj8847L6qrq/M6a+XKlQed71q1alVe5x1MdXV1nHfeefHKK6/s31uzZo2BxCLoV+4Ciumiiy6KiIj58+fHhx9+mPa1Rx55JLZu3RoXXnhh1NfXl6M8KlRDQ0O0trZGT09P/PznP9+//9prr8X8+fNjxIgRMW/evP37Z599dsyZMyc6OjqitbW1DBX3bvqRTIfqCwB914UXXliRZ/dW+gEAQF8nvwIAyJ08MVn0AwCAvk6+CwCl09XVlfb4S1/6Ul7npFKpGD16dMZ+e3t71NXV5XXmoRxY4+c/LZHC6dUDiZMnT45x48bFW2+9FV/5yldi6tSp8eMf/zguu+yyuPnmm6OhoSHmz59f7jKpQN/73vfii1/8Yjz55JPR0dERu3btiuuvvz6qq6tj6dKlGW+Ic+bMiebm5njwwQfjb3/7W5mq7r30I5kO7AsAfdsNN9xQkWf3VvoBAADyKwCAXMkTk0U/AABAvgsApTJq1Ki45ppr4oorrogJEybEiBEj8jpnzpw5B92fNm3a0ZR3UCNHjowJEybEFVdcEddcc02MGjWq4K9BLx9IrK6ujhdffDHa2tritNNOi9/85jexYMGCePvtt+Paa6+N1atXx/nnn1/uMqlA/fv3j9mzZ8eePXvizjvvjNtvvz02b94cd9xxRzQ3N2d8f01NTSxdujRqa2tjypQpsWvXrjJU3XvpRzId2BcA+razzz47xo4dW/Bzx44d6x+LedAPAACQXwEA5EqemCz6AQAA8l0AKJVrr702nn766Xjuuedi+fLlMWPGjCM+o6urK9ra2jL2N27cWIgSM8yYMSOWL18ezz33XDz99NPxne98pyiv09fVlLuAYquvr49Zs2bFrFmzyl0KFWTo0KGRSqUO+z0tLS3R0tKy//GDDz542O8fMWJEdHd3F6S+vkY/kimfvnzmr3/9a5GqAiDJHnjggTj33HOjp6enIOfV1tZmvfM5NP0AAKC3k18BABSOPDFZ9AMAgN5OvgsAvUdjY2PGXnNzczQ1NZWhGgqlV39CIgAAkBwjR46Mu+66q2Dn3XXXXTFixIiCndfX6AcAAAAAkCt5YrLoBwAAAACVYOXKldHZ2Zmxv2rVqjJUQyEZSAQAAEqmtbU1br311qM+p6WlJVpbWwtQUd+mHwAAAABAruSJyaIfAAAAACRZKpWK0aNHZ+y3t7dHXV1dGSqikAwkAgAAJVNVVRULFy6Mtra2qK2tPeLn19bWRltbW/z617+OqqqqIlTYt+gHAAAAAJAreWKy6AcAAAAASTZnzpyD7k+bNq3ElVAMBhIBAICSqqqqilmzZsUbb7wRY8eOzfl5Y8eOjdWrV8esWbP8zxEFpB8AAAAAQK7kicmiHwAAAAAkUVdXV7S1tWXsb9y4sQzVUAw15S4AAADom0aOHBmvvvpqrF27Nh5//PFYuXJlrF27Nj755JOIiKivr4+RI0fGhRdeGDfccEOMGjWqzBX3bvoBAAAAAORKnpgs+gEAAABAkjQ2NmbsNTc3R1NTUxmqoRgMJAIAAGU1atSoaG9vj4iIPXv2xI4dOyIiYuDAgVFT458spaYfAAAAAECu5InJoh8AAAAAlNvKlSujs7MzY3/VqlVlqIZikTYCAACJUVNTEyeccEK5y+D/0Q8AAAAAIFfyxGTRDwAAAABKLZVKxejRozP229vbo66urgwVUSz9yl0AAAAAAAAAAAAAAAAAAJVrzpw5B92fNm1aiSuh2AwkAgAAAAAAAAAAAAAAAJCXrq6uaGtry9jfuHFjGaqh2AwkAgAAAAAAAAAAAAAAAJCXxsbGjL3m5uZoamoqQzUUm4FEKtLevXvLXUJileNnox+Hph/J4mcDAAAAUH4ymkPzswEAAAAAkkyGeWh+NgBUimLcWf/617+is7MzY3/VqlUFf61icp/nzkAiFaG+vj7t8SeffFKmSpKvu7s77XH//v0L/hr6kTv9SJZS9AMAAACAdPKr3MmvAAAAAIAkke/mTr4LQFIV+z5PpVJx2223Zey3t7dHXV1dQV+r2NznuTOQSEU48A/x7t27y1RJ8h34synGG6B+5E4/kqUU/QAAAAAgnfwqd/IrAAAAACBJ5Lu5k+8CkFTFvs+3b98eb7/9dtreF77whZg2bVpBX6cU3Oe5M5BIRTjppJPSHr/33ntlqiT5tm7dmvb4xBNPLPhr6Efu9CNZStEPAAAAANLJr3InvwIAAAAAkkS+mzv5LgBJVez7fNCgQbFhw4aYO3du1NfXxzHHHBPr1q0r6GuUivs8dwYSqQjDhg1Le7x58+YyVZJ8mzZtSns8fPjwgr+GfuROP5KlFP0AAAAAIJ38KnfyKwAAAAAgSeS7uZPvApBUpbjPGxoa4s4774y33nornnzyyRg8eHDBX6MU3Oe5M5BIRTjwD/G2bdtix44dZaomuXbs2BHbt29P2yvGG6B+5EY/kqVU/QAAAAAgnfwqN/IrAAAAACBp5Lu5ke8CkGSlvM8bGxvjqquuKsrZxeY+PzIGEqkIX/7yl6Oqqipt78DJYzJ/Jv369YvTTz+94K+jH7nRj2QpVT8AAAAASCe/yo38CgAAAABIGvlubuS7ACSZ+zw37vMjYyCRilBfXx9DhgxJ23v55ZfLVE1yvfTSS2mPhwwZEvX19QV/Hf3IjX4kS6n6AQAAAEA6+VVu5FcAAAAAQNLId3Mj3wUgydznuXGfHxkDiVSMiRMnpj1etmxZmSpJrgN/Jgf+zApJP7LTj2QpZT8AAAAASCe/yk5+BQAAAAAkkXw3O/kuAEnnPs/OfX5kDCRSMSZPnpz2ePXq1fHvf/+7TNUkT0dHR7z55ptpewf+zApJPw5PP5Kl1P0AAAAAIJ386vDkVwAAAABAUsl3D0++C0AlcJ8fnvv8yBlIpGJcfPHFcfLJJ6ftLVy4sEzVJM8DDzyQ9viUU06JcePGFe319OPw9CNZSt0PAAAAANLJrw5PfgUAAAAAJJV89/DkuwBUAvf54bnPj5yBRCpGTU1NXH311Wl7CxcujH/+859lqig51q9fn3EZXHXVVVFTU1O019SPQ9OPZClHPwAAAABIJ786NPkVAAAAAJBk8t1Dk+8CUCnc54fmPs9PVSqVSpW7CMhVR0dHfPWrX43u7u79e+PGjYtXXnkl+vXrm/O1e/fujfHjx8eKFSv279XX18dbb70VjY2NRX1t/cikH8lSzn4AAAAAkE5+lUl+BQAAAABUAvluJvkuAJXGfZ7JfZ6/vvk7horV2NgYt99+e9req6++GjfddFPs3bu3TFWVz969e+Omm25Ke/OLiGhtbS3Jm59+pNOPZCl3PwAAAABIJ79KJ78CAAAAACqFfDedfBeASuQ+T+c+Pzo+IZGKs3v37jjrrLPi3XffTdufOnVqPPLII31mMvuzN7/Fixen7Q8dOjQ2bNgQDQ0NJalDP/bRj2RJSj8AAAAASCe/2kd+BQAAAABUGvnuPvJdACqZ+3wf9/nR6xu/U+hVBgwYEIsWLYqampq0/cWLF8f48eNj/fr1ZaqsdNavXx/jx4/PePOrqamJRx99tKRvfvqhH0mTpH4AAAAAkE5+Jb8CAAAAACqTfFe+C0Dlc5+7zwvFQCIVacKECfHMM89kvAmuWLEimpubY/r06dHR0VGm6oqno6Mjpk+fHs3NzRkfC1tTUxPPPPNMTJgwoeR16Yd+JEFS+wEAAABAOvmV/AoAAAAAqEzyXfkuAJXPfe4+L4SqVCqVKncRkK/f//738a1vfSv27Nlz0K+fc845MXny5Pj6178ew4cPj4EDB5a4wqOzY8eO2LRpU7z00kuxbNmyePPNNw/6fZ+9+V155ZUlrjCdfuyjH6VRaf0AAAAAIJ38ah/5FQAAAABQaeS7+8h3Aahk7vN93Of5MZBIxXvxxRfj+9//fmzZsiXr955yyikxfPjwGDx4cAwYMCDq6+ujX79kfFDo3r17o7u7O3bv3h1bt26NTZs2xfbt27M+b+jQofHoo48mZhJbP/SjGHpLPwAAAABIJ7+SXwEAAAAAlUm+K98FoPK5z93n+TKQSK/w0Ucfxb333hv33XdfdHd3l7uckqivr4/W1taYNWtWNDQ0lLucNPqhH+WW5H4AAAAAkE5+Jb8CAAAAACqTfFe+C0Dlc5+7z/NhIJFepaOjI37xi1/Es88+G52dneUupyhOOeWUuOqqq2LmzJnR2NhY7nIOSz+SRT8AAAAASDL5FQAAAABAZZLvAkDlc59zJAwk0ivt2bMnXn311Vi2bFksX748tmzZEpX6W72qqiqGDh0aEydOjMmTJ8e4ceOipqam3GUdEf1IFv0AAAAAIMnkVwAAAAAAlUm+CwCVz31OLgwk0id0d3fHO++8E5s2bYpNmzbFBx98EB9//HF8/PHH5S4tTf/+/aN///5x4oknxvDhw2P48OFx+umnR319fblLKyj9SBb9AAAAACDJ5FcAAAAAAJVJvgsAlc99zsEYSAQAAAAAAAAAAAAAAAAAsupX7gIAAAAAAAAAAAAAAAAAgOQzkAgAAAAAAAAAAAAAAAAAZGUgEQAAAAAAAAAAAAAAAADIykAiAAAAAAAAAAAAAAAAAJCVgUQAAAAAAAAAAAAAAAAAICsDiQAAAAAAAAAAAAAAAABAVgYSAQAAAAAAAAAAAAAAAICsDCQCAAAAAAAAAAAAAAAAAFkZSAQAAAAAAAAAAAAAAAAAsjKQCAAAAAAAAAAAAAAAAABkZSARAAAAAAAAAAAAAAAAAMjKQCIAAAAAAAAAAAAAAAAAkJWBRAAAAAAAAAAAAAAAAAAgKwOJAAAAAAAAAAAAAAAAAEBWBhIBAAAAAAAAAAAAAAAAgKwMJAIAAAAAAAAAAAAAAAAAWRlIBAAAAAAAAAAAAAAAAACyMpAIAAAAAAAAAAAAAAAAAGRlIBEAAAAAAAAAAAAAAAAAyMpAIgAAAAAAAAAAAAAAAACQlYFEAAAAAAAAAAAAAAAAACArA4kAAAAAAAAAAAAAAAAAQFYGEgEAAAAAAAAAAAAAAACArAwkAgAAAAAAAAAAAAAAAABZGUgEAAAAAAAAAAAAAAAAALIykAgAAAAAAAAAAAAAAAAAZGUgEQAAAAAAAAAAAAAAAADIykAiAAAAAAAAAAAAAAAAAJCVgUQAAAAAAAAAAAAAAAAAICsDiQAAAAAAAAAAAAAAAABAVgYSAQAAAAAAAAAAAAAAAICsDCQCAAAAAAAAAAAAAAAAAFkZSAQAAAAAAAAAAAAAAAAAsjKQCAAAAAAAAAAAAAAAAABkZSARAAAAAAAAAAAAAAAAAMjKQCIAAAAAAAAAAAAAAAAAkJWBRAAAAAAAAAAAAAAAAAAgKwOJAAAAAAAAAAAAAAAAAEBWBhIBAAAAAAAAAAAAAAAAgKwMJAIAAAAAAAAAAAAAAAAAWRlIBAAAAAAAAAAAAAAAAACyMpAIAAAAAAAAAAAAAAAAAGRlIBEAAAAAAAAAAAAAAAAAyMpAIgAAAAAAAAAAAAAAAACQlYFEAAAAAAAAAAAAAAAAACArA4kAAAAAAAAAAAAAAAAAQFYGEgEAAAAAAAAAAAAAAACArAwkAgAAAAAAAAAAAAAAAABZGUgEAAAAAAAAAAAAAAAAALIykAgAAAAAAAAAAAAAAAAAZGUgEQAAAAAAAAAAAAAAAADIykAiAAAAAAAAAAAAAAAAAJCVgUQAAAAAAAAAAAAAAAAAICsDiQAAAAAAAAAAAAAAAABAVgYSAQAAAAAAAAAAAAAAAICsDCQCAAAAAAAAAAAAAAAAAFkZSAQAAAAAAAAAAAAAAAAAsjKQCAAAAAAAAAAAAAAAAABkZSARAAAAAAAAAAAAAAAAAMjKQCIAAAAAAAAAAAAAAAAAkJWBRAAAAAAAAAAAAAAAAAAgKwOJAAAAAAAAAAAAAAAAAEBWBhIBAAAAAAAAAAAAAAAAgKwMJAIAAAAAAAAAAAAAAAAAWRlIBAAAAAAAAAAAAAAAAACyMpAIAAAAAAAAAAAAAAAAAGRlIBEAAAAAAAAAAAAAAAAAyMpAIgAAAAAAAAAAAAAAAACQlYFEAAAAAAAAAAAAAAAAACCr/wMNIGVEKqknzgAAAABJRU5ErkJggg==\n"
          },
          "metadata": {}
        }
      ],
      "source": [
        "import pennylane as qml\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "# Set up a nine-qubit system\n",
        "dev = qml.device(\"default.qubit.torch\", wires=9)\n",
        "\n",
        "ob_center = qml.PauliZ(4)\n",
        "ob_corner = (qml.PauliZ(0) + qml.PauliZ(2) + qml.PauliZ(6) + qml.PauliZ(8)) * (1 / 4)\n",
        "ob_edge = (qml.PauliZ(1) + qml.PauliZ(3) + qml.PauliZ(5) + qml.PauliZ(7)) * (1 / 4)\n",
        "\n",
        "# Now let's encode the data in the following qubit models, first with symmetry\n",
        "@qml.qnode(dev, interface=\"torch\")\n",
        "def circuit(x, p):\n",
        "\n",
        "    qml.RX(x[0], wires=0)\n",
        "    qml.RX(x[1], wires=1)\n",
        "    qml.RX(x[2], wires=2)\n",
        "    qml.RX(x[3], wires=3)\n",
        "    qml.RX(x[4], wires=4)\n",
        "    qml.RX(x[5], wires=5)\n",
        "    qml.RX(x[6], wires=6)\n",
        "    qml.RX(x[7], wires=7)\n",
        "    qml.RX(x[8], wires=8)\n",
        "\n",
        "    # Centre single-qubit rotation\n",
        "    qml.RX(p[0], wires=4)\n",
        "    qml.RY(p[1], wires=4)\n",
        "\n",
        "    # Corner single-qubit rotation\n",
        "    qml.RX(p[2], wires=0)\n",
        "    qml.RX(p[2], wires=2)\n",
        "    qml.RX(p[2], wires=6)\n",
        "    qml.RX(p[2], wires=8)\n",
        "\n",
        "    qml.RY(p[3], wires=0)\n",
        "    qml.RY(p[3], wires=2)\n",
        "    qml.RY(p[3], wires=6)\n",
        "    qml.RY(p[3], wires=8)\n",
        "\n",
        "    # Edge single-qubit rotation\n",
        "    qml.RX(p[4], wires=1)\n",
        "    qml.RX(p[4], wires=3)\n",
        "    qml.RX(p[4], wires=5)\n",
        "    qml.RX(p[4], wires=7)\n",
        "\n",
        "    qml.RY(p[5], wires=1)\n",
        "    qml.RY(p[5], wires=3)\n",
        "    qml.RY(p[5], wires=5)\n",
        "    qml.RY(p[5], wires=7)\n",
        "\n",
        "    # Double Entagling two-qubit gates\n",
        "    # circling the edge of the board\n",
        "    qml.CRY(p[6], wires=[0, 1])\n",
        "    qml.CRY(p[6], wires=[2, 1])\n",
        "    qml.CRY(p[6], wires=[2, 5])\n",
        "    qml.CRY(p[6], wires=[8, 5])\n",
        "    qml.CRY(p[6], wires=[8, 7])\n",
        "    qml.CRY(p[6], wires=[6, 7])\n",
        "    qml.CRY(p[6], wires=[6, 3])\n",
        "    qml.CRY(p[6], wires=[0, 3])\n",
        "\n",
        "    # To the corners from the centre\n",
        "    qml.CRY(p[7], wires=[4, 0])\n",
        "    qml.CRY(p[7], wires=[4, 2])\n",
        "    qml.CRY(p[7], wires=[4, 6])\n",
        "    qml.CRY(p[7], wires=[4, 8])\n",
        "\n",
        "    # To the centre from the edges\n",
        "    qml.CRY(p[8], wires=[1, 4])\n",
        "    qml.CRY(p[8], wires=[3, 4])\n",
        "    qml.CRY(p[8], wires=[5, 4])\n",
        "    qml.CRY(p[8], wires=[7, 4])\n",
        "\n",
        "    # circling the edge of the board\n",
        "    qml.CRY(p[6], wires=[0, 1])\n",
        "    qml.CRY(p[6], wires=[2, 1])\n",
        "    qml.CRY(p[6], wires=[2, 5])\n",
        "    qml.CRY(p[6], wires=[8, 5])\n",
        "    qml.CRY(p[6], wires=[8, 7])\n",
        "    qml.CRY(p[6], wires=[6, 7])\n",
        "    qml.CRY(p[6], wires=[6, 3])\n",
        "    qml.CRY(p[6], wires=[0, 3])\n",
        "\n",
        "    # To the corners from the centre\n",
        "    qml.CRY(p[7], wires=[4, 0])\n",
        "    qml.CRY(p[7], wires=[4, 2])\n",
        "    qml.CRY(p[7], wires=[4, 6])\n",
        "    qml.CRY(p[7], wires=[4, 8])\n",
        "\n",
        "    # To the centre from the edges\n",
        "    qml.CRY(p[8], wires=[1, 4])\n",
        "    qml.CRY(p[8], wires=[3, 4])\n",
        "    qml.CRY(p[8], wires=[5, 4])\n",
        "    qml.CRY(p[8], wires=[7, 4])\n",
        "\n",
        "    return [qml.expval(ob_center), qml.expval(ob_corner), qml.expval(ob_edge)]\n",
        "\n",
        "\n",
        "fig, ax = qml.draw_mpl(circuit)([0] * 9, 18 * [0])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "EZKg8hC1PtCJ"
      },
      "source": [
        "Let\\'s also look at the same series of gates but this time they are\n",
        "applied independently from one another, so we won\\'t be preserving the\n",
        "symmetries with our gate operations. Practically this also means more\n",
        "parameters, as previously groups of gates were updated together.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 31,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 440
        },
        "id": "Bhp9RWhXPtCJ",
        "outputId": "b210c9de-d33b-4f77-9ef7-b47225b95698"
      },
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 3600x1000 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAADiQAAAP7CAYAAABh9gf5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdf5iVdZ0//tcwMwy/rfyBu0pMDhgZCmOgQUrYxx+Zu3gpF266fUjYxjKBdPEKEZfLrMuBJJUlWgVWQd36JFm6bVeiXJGSCxV48SOgDVCovApQS2HAYWDO9w++sh6GYc6cOXPOfWYej+u6Lz3vc859v+Y8Z86536/bt6cklUqlAgAAAAAAAAAAAAAAAADgBLoUugAAAAAAAAAAAAAAAAAAIPksSAQAAAAAAAAAAAAAAAAAWmRBIgAAAAAAAAAAAAAAAADQIgsSAQAAAAAAAAAAAAAAAIAWWZAIAAAAAAAAAAAAAAAAALTIgkQAAAAAAAAAAAAAAAAAoEUWJAIAAAAAAAAAAAAAAAAALbIgEQAAAAAAAAAAAAAAAABokQWJAAAAAAAAAAAAAAAAAECLLEgEAAAAAAAAAAAAAAAAAFpkQSIAAAAAAAAAAAAAAAAA0CILEgEAAAAAAAAAAAAAAACAFlmQCAAAAAAAAAAAAAAAAAC0yIJEAAAAAAAAAAAAAAAAAKBFFiQCAAAAAAAAAAAAAAAAAC2yIBEAAAAAAAAAAAAAAAAAaJEFiQAAAAAAAAAAAAAAAABAiyxIBAAAAAAAAAAAAAAAAABaZEEiAAAAAAAAAAAAAAAAANAiCxIBAAAAAAAAAAAAAAAAgBZZkAgAAAAAAAAAAAAAAAAAtMiCRAAAAAAAAAAAAAAAAACgRRYkAgAAAAAAAAAAAAAAAAAtsiARAAAAAAAAAAAAAAAAAGiRBYkAAAAAAAAAAAAAAAAAQIssSAQAAAAAAAAAAAAAAAAAWmRBIgAAAAAAAAAAAAAAAADQIgsSAQAAAAAAAAAAAAAAAIAWWZAIAAAAAAAAAAAAAAAAALTIgkQAAAAAAAAAAAAAAAAAoEUWJAIAAAAAAAAAAAAAAAAALbIgEQAAAAAAAAAAAAAAAABokQWJAAAAAAAAAAAAAAAAAECLLEgEAAAAAAAAAAAAAAAAAFpkQSIAAAAAAAAAAAAAAAAA0CILEgEAAAAAAAAAAAAAAACAFlmQCAAAAAAAAAAAAAAAAAC0yIJEAAAAAAAAAAAAAAAAAKBFFiQCAAAAAAAAAAAAAAAAAC2yIBEAAAAAAAAAAAAAAAAAaJEFiQAAAAAAAAAAAAAAAABAiyxIBAAAAAAAAAAAAAAAAABaZEEiAAAAAAAAAAAAAAAAANAiCxIBAAAAAAAAAAAAAAAAgBZZkAgAAAAAAAAAAAAAAAAAtMiCRAAAAAAAAAAAAAAAAACgRRYkAgAAAAAAAAAAAAAAAAAtsiARAAAAAAAAAAAAAAAAAGiRBYkAAAAAAAAAAAAAAAAAQIssSAQAAAAAAAAAAAAAAAAAWmRBIgAAAAAAAAAAAAAAAADQIgsSAQAAAAAAAAAAAAAAAIAWWZAIAAAAAAAAAAAAAAAAALTIgkQAAAAAAAAAAAAAAAAAoEUWJAIAAAAAAAAAAAAAAAAALbIgEQAAAAAAAAAAAAAAAABokQWJAAAAAAAAAAAAAAAAAECLLEgEAAAAAAAAAAAAAAAAAFpkQSIAAAAAAAAAAAAAAAAA0CILEgEAAAAAAAAAAAAAAACAFlmQCAAAAAAAAAAAAAAAAAC0yIJEAAAAAAAAAAAAAAAAAKBFFiQCAAAAAAAAAAAAAAAAAC2yIBEAAAAAAAAAAAAAAAAAaJEFiQAAAAAAAAAAAAAAAABAiyxIBAAAAAAAAAAAAAAAAABaZEEiAAAAAAAAAAAAAAAAANAiCxIBAAAAAAAAAAAAAAAAgBaVFboAyIf6+vp45ZVXYuvWrbFt27Z4/fXX45133on6+vpCl5amoqIiunXrFqecckoMGDAgBg4cGGeddVZUVFQUurSckkeyyAMAAKBzMh8EAAAAAChO+rsAAEC+mH9wPBYk0iEdOnQoXnjhhVi6dGksW7Ysdu7cGalUqtBlZaWkpCT69+8fV1xxRYwbNy4++clPRllZcf3pyiNZ5AEAANA5mQ8CAAAAABQn/V0AACBfzD/IREmqWH8r4Di2bdsW3/rWt+Kpp56KPXv2FLqcdnHqqafG2LFj4/bbb4+qqqpCl3NC8kgWeQAAAHRO5oMAAAAAAMVJfxcAAMgX8w9aw4JEOoT9+/fHrFmzYvbs2XHw4MFCl5MXFRUV8dWvfjXuuOOO6NGjR6HLSSMPeRRakvMAAADIF/NB80EAAAAAoDjp7+rvAgBAvph/mH9kw4JEit5zzz0XN910U+zcubPFx/bt2zcGDBgQ/fr1ix49ekTXrl2jS5cueaiyZY2NjXHw4MHYv39//OEPf4ht27bFrl27WnxeZWVlPPzww3H55ZfnocqWyUMe7aGj5AEAAJAv5oPmgwAAAABAcdLf1d8FAIB86Wjzj40bN8af/vSnaGhoMP9oZxYkUtR+9KMfxXXXXReHDh067v0f+9jHYty4cXHppZfGwIEDo0+fPnmusG3efvvt2Lp1ayxfvjyefPLJePnll4/7uLKysnjyySfjmmuuyXOF6eRxhDzyo9jyAAAAyBfzwSPMBwEAAACAYqO/e4T+LgAAtL+ONP9obGyMO++8M2bPnh0//OEP45prrjH/aGcWJFK0mnvzKy0tjcmTJ8fkyZPjrLPOKlB17WP79u3x7W9/O+bNmxeHDx9Ou6/Qb4LykEehJTkPAACAfDEfNB8EAAAAAIqT/q7+LgAA5EtHmn8cOHAgxo8fHz/4wQ8iIuJPf/pTnH766U0eZ/6RWxYkUpSee+65uOqqq5q8+Y0aNSrmz58fgwcPLlBl+fGb3/wmbrnllnjxxRfTxsvKyuInP/lJ3r8uVh7ySJKk5QEAAJAv5oPmgwAAAABAcdLf1d8FAIB86Ujzj127dsWYMWPiV7/6VUREVFZWxquvvnrC55h/5IYFiRSd/fv3xznnnBM7d+5MG6+pqYmHHnoounTpUqDK8quxsTG+9KUvxcKFC9PGKysrY/PmzdG9e/e81CGPI+SRLEnJAwAAIF/MB48wHwQAAAAAio3+7hH6uwAA0P460vxj06ZNcdVVV6X9LNdff31897vfbfG55h9tVzy/KfD/mzVrVod482urLl26xEMPPRQ1NTVp4zt27IhZs2blrQ55HCGPZElKHgAAAPliPniE+SAAAAAAUGz0d4/Q3wUAgPbXUeYfy5cvj5EjRzb5WUaMGJHR880/2s43JFJUtm3bFoMHD476+vqjY6NGjYoVK1YU1ZtfLjU2Nsbo0aNj5cqVR8cqKipi06ZNUVVV1a7HlkdT8kiWQuYBAACQL+aDTZkPAgAAAADFQH+3Kf1dAABoHx1l/rFo0aK4+eab49ChQ03u+/Wvfx3Dhg3LeF/mH9krnt8YiIhvfetbaW9+paWlMX/+/KJ688u1Ll26xPz586O0tPToWH19fcyZM6fdjy2PpuSRLIXMAwAAIF/MB5syHwQAAAAAioH+blP6uwAA0D6Kff7R2NgY06ZNi5qamuMuRuzevXsMGTKkVfs0/8hecfzWQEQcOnQonnrqqbSxyZMnx+DBgwtUUXKce+65MXny5LSxH/7wh8d9k80VeTRPHslSiDwAAADyxXyweeaDAAAAAECS6e82T38XAAByq9jnHwcOHIjrrrsuvvnNbzb7mGHDhkV5eXmr923+kR0LEikaL7zwQuzZsydt7Ng/+s5s0qRJabd3794dL774YrsdTx4nJo9kyXceAAAA+WI+eGLmgwAAAABAUunvnpj+LgAA5E4xzz927doVo0ePbrKg8lgjRozI+hjmH61nQSJFY+nSpWm3P/axj8VZZ51VoGqSp6qqKs4///y0sWNfs1ySx4nJI1nynQcAAEC+mA+emPkgAAAAAJBU+rsnpr8LAAC5U6zzj02bNsWFF14Yv/rVr9LGu3RpuhyuLQsSzT9az4JEisayZcvSbo8bN65AlSTXsa/Jsa9ZLsmjZfJIlnzmAQAAkC/mgy0zHwQAAAAAkkh/t2X6uwAAkBvFOP94/vnnY+TIkbFz58608ZNOOinmzJnT5PEf//jH23Q884/WsSCRolBfX9/kTeTSSy8tUDXJddlll6Xd3rlzZ9TX1+f8OPLIjDySJV95AAAA5Iv5YGbMBwEAAACApNHfzYz+LgAAtF0xzj8WLlwYV155Zbz99ttp45WVlfHf//3f0aNHjybjp59+epuOaf7ROhYkUhReeeWVSKVSaWNnn312gapJroEDB6bdbmxsjFdffTXnx5FHZuSRLPnKAwAAIF/MBzNjPggAAAAAJI3+bmb0dwEAoO2Kaf7R2NgY06ZNi5tuuikOHz6cdt+FF14Yq1evjnPOOSdWrVqVdt+IESPafGzzj9axIJGisHXr1rTbffv2jd69exeomuTq06dPnHbaaWljx752uSCPzMgjWfKVBwAAQL6YD2bGfBAAAAAASBr93czo7wIAQNsVy/xj//79cd1118U3v/nN497/+OOPR9++fSMi2mVBovlH61iQSFHYtm1b2u0BAwYUqJLkO3ZVdnu8Acojc/JIlnzkAQAAkC/mg5kzHwQAAAAAkkR/N3P6uwAA0DbFMv94880348CBA83ef/bZZ8eVV14Zr7/+evzud79Luy8XCxIjzD9aw4JEisLrr7+edrtfv34FqiT5zjzzzLTbb7zxRs6PIY/MySNZ8pEHAABAvpgPZs58EAAAAABIEv3dzOnvAgBA2xTL/OPMM8+M//qv/4pnnnkmKisrj/uYZ599Nk499dS0se7du8eQIUNyVsN7mX80z4JEisI777yTdrtHjx4FqiT5jn1tjn3tckEemZNHsuQjDwAAgHwxH8yc+SAAAAAAkCT6u5nT3wUAgLZJ8vzj8OHDcfjw4aO3S0pKYsyYMbF58+aYOXNmRvsYNmxYlJeX56Qe84/MlRW6AMhEfX192u2uXbsWqJLkq6ioSLvdHm+A8sicPJIlH3kAAADki/lg5swHAQAAAIAk0d/NnP4uAAC0TaHnHwcPHoz169enbZs2bYq9e/dGQ0NDRESUl5dH796946Mf/WgMGTIkhgwZEh/84Acz2v+IESNyVqv5R+YsSKQodeniyz2bU4jXRh7Nk0eyeG0AAICOzJyneV4bAAAAACDJ9DCb57UBAIDcytc59rp16+KRRx6J//iP/4g333zzhI9taGiIN998M1auXBkrV65s1XFyuSDR/CNzFiQCAAAAAAAAAAAAAAAAkLVDhw7Fv//7v8dDDz0U69aty/n+r7rqqli+fHnatz5+/OMfz/lxaJkFiQAAAAAAAAAAAAAAAABkZdWqVXHzzTfH+vXr2+0YP/nJT2LQoEHx/ve/P1atWhWVlZVx+umnt9vxaJ4FiQAAAAAAAAAAAAAAAAC0yhtvvBF33HFHLFq06ISPO/vss2PIkCFHtzPOOCMqKioiIqK+vj5ee+21WL9+fXz9619P+wbEY/32t7+NiIjLLrssBg8enLsfhFaxIBEAOoGGhobYu3dvRET07t07ysvLC1wRAADkjvNdAIDccn4FAADki/kHAABA8Vq3bl383d/9Xbz22mvHvb9fv35x4403xuc///moqqo64b6qq6vj5JNPjrvuuiujYz///POxefPmGD9+fAwdOrS1pdNGXQpdAADQPtatWxdTpkyJ4cOHR69eveLkk0+Ok08+OXr16hXDhw+PKVOmtOtXYgMAQHtyvgsAkFvOrwAAgHwx/wAAACh+zz77bFx00UXHXYw4ePDg+OlPfxqvvvpq3HPPPS0uRoyISKVSMXLkyCbjDzzwQPz0pz897rchvvbaa3HRRRfFs88+m90PQdYsSASADmbDhg0xatSoqK6ujnnz5sWaNWvi4MGDR+8/ePBgrFmzJubNmxdDhw6NUaNGxYYNGwpYMQAAZM75LgBAbjm/AgAA8sX8AwAAoGP48Y9/HGPGjIm6urq08Z49e8acOXPi5Zdfjk9/+tNRWlqa8T5nzJhx3PFbb701Pv3pT8fLL78cc+bMiZ49e6bdX1dXF1dffXX8+Mc/bv0PQtYsSASADiKVSsWsWbNi2LBhsXLlyoyft3Llyhg2bFjMmjUrUqlUO1YIAADZc74LAJBbzq8AAIB8Mf8AAADoOF566aUYO3ZsNDQ0pI1ffPHFsWXLlpg6dWqUl5e3ap979+6N2traJuNbtmw5+u/l5eUxderU2LJlS1x00UVpjzt48GCMHTs2XnrppVYdl+xZkAgAHUAqlYrJkyfH9OnTm5zcZaKhoSGmT58ekydP1sQHACBxnO8CAOSW8ysAACBfzD8AAAA6jr/85S9xww03NJnfXX/99fH8889Hv379stpvVVVVk7Hq6uoYNGhQk/F+/frF8uXL4/rrr08bb2hoiBtuuCH++te/ZlUDrdMpFiT++te/js985jPxvve9L3r27Bkf//jH48knnyx0WSTYjh07oqSkJG0rLy+PM844I6677rpYs2ZN2uP37t0blZWV0a1bt9i8efNx9zl79uwoKSmJL3zhC/n4EToUeSRTprk8+OCDUVJSEhMmTGh2Xz//+c+jS5cuMXz48Dh06FC+foQOZfbs2TF//vw272f+/Pkxe/bsHFQEAAC543w3WcwHAaD4Ob8CAADyxfwjWfR3AQCAbKVSqaipqYnf//73aeMTJ06Mxx9/PCoqKrLa76pVq2LPnj1NxlevXt3scyoqKuLxxx+PiRMnpo3//ve/j5qaGv9DmzwoK3QB7W3FihVxxRVXRLdu3eKzn/1s9O7dO5566qn4h3/4h/jDH/4QU6dOLXSJJFhVVVV87nOfi4iIurq6WLt2bSxdujSefvrpWL58eYwaNSoiInr37h2PPPJIXHrppfH5z38+Vq1aFWVl//vntXHjxpg5c2b0798/HnjggYL8LB2BPJKppVy+8pWvxDPPPBOLFy+Oa6+9Nv7+7/8+7fn79u2LCRMmREVFRTz22GNpWZGZDRs2xMyZM3O2v5kzZ8ZnPvOZOO+883K2TwAAyJbz3eQyHwSA4uT8CgAAyBfzj+TS3wUAAFpr4cKF8dRTT6WNjR49OhYsWBClpaVZ7TOVSsXIkSObjM+dOze6du16wueWlpbGggULYvv27fHCCy8cHf/BD34QixYtipqamqxqIjMd+hsSDx06FDU1NdGlS5d48cUXY8GCBfGtb30r1q9fH2effXbceeedsXPnzkKXSYINGDAg7r777rj77rvjvvvui5/97GdRW1sbDQ0N8S//8i9pj/3Upz4Vt9xyS6xZsybuvffeo+MNDQ0xfvz4aGhoiEcffTR69+6d7x+jw5BHMrWUS0lJSSxevDj69OkTNTU18cYbb6Q9f+rUqbFjx46ora2Nj3zkIwX6KYrbpEmTmnztdVs0NDTEpEmTcrY/AABoC+e7yWU+CADFyfkVAACQL+YfyaW/CwAAtMb+/ftj+vTpaWMf+MAH4oknnsh6MWJExIwZM447PmXKlIyeX1paGk888UR84AMfSBufPn167N+/P+u6aFmHXpD4s5/9LLZv3x433HBDDB069Oj4SSedFHfeeWccPHgwlixZUrgCKUr/9E//FBERa9eubXLf7NmzY8CAAfGNb3wj1q1bFxER99xzT6xbty4mT54cl1xyST5L7RTkkUzH5tK/f/948MEHY9euXXHzzTcffdyyZctiwYIFcckll8RXvvKVgtRa7NatWxcrV67M+X5XrlwZ69evz/l+AQCgNZzvFh/zQQBINudXAABAvph/FB/9XQAAoDmLFy+ON998M23s0UcfjTPOOCPrfe7duzdqa2ubjG/ZsqVV+znzzDPjkUceSRt74403rBdrZx16QeLPf/7ziIi4/PLLm9x3xRVXRESkfS0ntEZZWVmTsR49esTixYvj8OHDMX78+PjFL34RtbW18eEPfzhmzZpVgCo7D3kk03tzmTBhQowZMyaWLl0a3/ve9+Kvf/1rfOELX4g+ffrEo48+GiUlJQWstHgde/JULPsGAIBMON8tXuaDAJBMzq8AAIB8Mf8oXvq7AADAex0+fDjuv//+tLErr7wyxowZ06b9VlVVNRmrrq6OQYMGtXpfV199dVx55ZVpY/fff38cPnw46/o4sQ69IHHr1q0RETFw4MAm951++unRq1evo4+BTC1atCgiIi666KLj3v+JT3wi/vmf/zk2btwYl156aURELFmyJLp37563GjsTeSRTc7ksWLAgTjnllLjlllvixhtvjD/+8Y/x4IMPRv/+/QtRZoewatWqotw3AABkwvlu8TEfBIBkc34FAADki/lH8dHfBQAAjueZZ56J7du3p43dfvvtbdrnqlWrYs+ePU3GV69enfU+p06dmnZ727Zt8Z//+Z9Z748Ta/qVYh3IW2+9FRERJ5100nHv79Onz9HHFItUKhX79+8vdBl519DQUJDjbtu2Le6+++6IiKirq4u1a9fGihUrom/fvnHfffc1+7yZM2fG/Pnz48CBAzFp0qS48MIL81RxUw0NDVFXV5fzfRaCPJrfZyG1Jpe+ffvGww8/HGPHjo1nnnkmxowZExMmTChA1Ue0Rx751NDQEBs2bGi3/W/YsCHeeuut434DKQAAtDfnuy0zH8xesc8HASAbzq8AAIB8Mf9omf5u9vR3AQCgddo6/3jyySfTbldXV8cll1yS9f5SqVSMHDmyyfjcuXOja9euWe/3U5/6VAwdOjTWrVt3dOz73/9+XHPNNVnvk+YV74y8k9q/f3/06tWr0GV0Gtu3b4+vfe1raWOnn356rFy5MgYMGNDs8+bMmRMHDhyIiIhnn3029u/fHz169GjXWpuzcOHCWLhwYUGOnWvySKbW5nLttdfGBRdcEL/61a9i1qxZ+SrzuDpiHrlUX18f73vf+wpdBgAAtAvnu21nPggAvJfzKwAAIF/MP9pOfxcAAMjUsd9aeNNNN0VJSUnW+5sxY8Zxx6dMmZL1PiMiSkpK4qabboovf/nLR8d++ctftmmfNK9LoQtoT+9+M2Jz34L49ttvN/vtiRARccUVV0QqlYpUKhW7d++O++67L3bv3h1jxoyJffv2Hfc5a9eujXvvvTc+/OEPx+233x7btm2L6dOn57nyjkkeyZRNLt27d0/7JwAAAMXHfBAAAAAAoDjp7wIAAJn485//HDt37kwbu+iii7Le3969e6O2trbJ+JYtW7Le53sdW9uOHTti165dOdk36Tr0NyQOHDgwIiK2bt0aH/vYx9Lu+/Of/xz79u2LCy64oBClZa1Hjx7NTvg7sttuu63g/1ejU089NW6//fZ466234hvf+Ebcdddd8eCDD6Y9pr6+PsaPHx+pVCqWLFkS559/fjz33HMxb968GDt2bIwaNSrvddfU1MQDDzyQ033KI3sdNY93ZZJLkrRHHvnU0NAQffv2jYMHD7bL/isqKmLXrl1RVtahTxcAAEgo57stMx/MXrHPBwEgG86vAACAfDH/aJn+bvb0dwEAoHXaMv849hsGe/fuHR/5yEeyrqWqqqrJWHV1dQwaNCjrfb7XOeecE7169Upbd/XLX/4yxowZk5P987+Kd0aegU9+8pNRW1sbzz33XHz2s59Nu2/ZsmVHH1NMSkpKomfPnoUuI+/Ky8sLXcJRd955ZzzyyCPxne98J2699daorKw8et9dd90VmzdvjunTp8eFF14YERFLliyJCy64ICZOnBgbNmyIHj165LXe8vLynP/OyCN7HT2Pd50olyRpjzzy7bzzzos1a9a02759kzAAAIXkfPfEzAez1xHmgwCQDedXAABAvph/nJj+bvb0dwEAoHXaMv9Yv3592u3hw4dHaWlpVvtatWpV7Nmzp8n46tWrs9rf8ZSWlsbw4cNjxYoVR8fWrVtnQWI76FLoAtrT//k//yfOOuus+O53vxvr1q07Ov7WW2/FvffeG127do3x48cXrkCKUvfu3WPatGnR0NAQX//614+Ov/TSS3H//ffHueeeG3fffffR8aFDh8aMGTNi+/btMW3atAJU3LHJI5may4XcGzFiRFHuGwAAMuF8t/iYDwJAsjm/AgAA8sX8o/jo7wIAAMfau3dv2u1+/fpltZ9UKhUjR45sMj537tzo2rVrVvtszrE1vvfbEsmdDr0gsaysLBYtWhSNjY0xatSouOmmm2Lq1KkxZMiQ+N3vfhf33ntvYv8vPiTbTTfdFH/7t38bjz32WGzfvj3q6urixhtvjNLS0liyZEmTN8QZM2ZEdXV1zJ8/P1544YUCVd1xySOZjs2F9jFx4sSi3DcAAGTC+W5xMh8EgORyfgUAAOSL+Udx0t8FAADea8iQIfHZz342rr766rj88svj3HPPzWo/M2bMOO74lClT2lLecZ133nlx+eWXx9VXXx2f/exnY8iQITk/Bh18QWJExCWXXBK/+MUv4hOf+ER8//vfj3/7t3+Lvn37xv/7f/8vpk6dWujyKFLdunWL6dOnx6FDh+JrX/tafPWrX41t27bFXXfdFdXV1U0eX1ZWFkuWLIny8vKYMGFC1NXVFaDqjkseyXRsLrSPoUOHxsUXX5zz/V588cVOvgAAKDjnu8XJfBAAksv5FQAAkC/mH8VJfxcAAHivz33uc/G9730vnn766Vi2bFlW67D27t0btbW1Tca3bNmSixKbmDp1aixbtiyefvrp+N73vhf/+I//2C7H6ezKCl1APlxwwQXx05/+tNBlUEQqKysjlUqd8DGTJk2KSZMmHb09f/78Ez7+3HPPjfr6+pzU19nII5myyeVdP//5z9upqs7p29/+dgwbNiwaGhpysr/y8vIW/4YAACBfnO8mj/kgABQ351cAAEC+mH8kj/4uAACQb1VVVU3GqqurY9CgQQWohlzp8N+QCAAd3XnnnRf33HNPzvZ3zz33ZP112gAAkGvOdwEAcsv5FQAAkC/mHwAAAJ3bqlWrYs+ePU3GV69eXYBqyCULEgGgA5g2bVrccsstbd7PpEmTYtq0aTmoCAAAcsf5LgBAbjm/AgAA8sX8AwAAoHNKpVIxcuTIJuNz586Nrl27FqAicsmCRADoAEpKSmLevHlRW1sb5eXlrX5+eXl51NbWxr/+679GSUlJO1QIAADZc74LAJBbzq8AAIB8Mf8AAADonGbMmHHc8SlTpuS5EtqDBYkA0EGUlJTEHXfcEWvWrImLL7444+ddfPHFsXbt2rjjjjs07wEASCznuwAAueX8CgAAyBfzDwAAgM5l7969UVtb22R8y5YtBaiG9lBW6AIAgNw677zz4sUXX4z169fHI488EqtWrYr169fHwYMHIyKioqIizjvvvBgxYkRMnDgxhgwZUuCKAQAgc853AQByy/kVAACQL+YfAAAAnUNVVVWTserq6hg0aFABqqE9WJAIAB3UkCFDYu7cuRER8dZbb8X73ve+iIjYtWtXnHTSSQWsDAAA2s75LgBAbjm/AgAA8sX8AwAAoONatWpV7Nmzp8n46tWrC1AN7aVLoQsAANpfWVnZcf8dAAA6Aue7AAC55fwKAADIF/MPAACAjiOVSsXIkSObjM+dOze6du1agIpoLxYkAgAAAAAAAAAAAAAAAJC1GTNmHHd8ypQpea6E9mZBIgAAAAAAAAAAAAAAAABZ2bt3b9TW1jYZ37JlSwGqob1ZkAgAAAAAAAAAAAAAAABAVqqqqpqMVVdXx6BBgwpQDe3NgkSKUmNjY6FLSKxCvDbyaJ48ksVrAwAAdGTmPM3z2gAAAAAASaaH2TyvDQAA5FZ7nGP/9re/jT179jQZX716dc6P1Z7MPzJnQSJFoaKiIu32wYMHC1RJ8tXX16fd7tatW86PIY/MySNZ8pEHAABAvpgPZs58EAAAAABIEv3dzOnvAgBA27T3/COVSsWtt97aZHzu3LnRtWvXnB6rvZl/ZM6CRIrCsX/E+/fvL1AlyXfsa9Meb4DyyJw8kiUfeQAAAOSL+WDmzAcBAAAAgCTR382c/i4AALRNe88/du/eHf/zP/+TNvb+978/pkyZktPj5IP5R+YsSKQonHLKKWm3//CHPxSokuT74x//mHb75JNPzvkx5JE5eSRLPvIAAADIF/PBzJkPAgAAAABJor+bOf1dAABom/aef/Tt2zc2b94cM2fOjIqKiujZs2ds2LAhp8fIF/OPzFmQSFEYMGBA2u1t27YVqJLk27p1a9rtgQMH5vwY8sicPJIlH3kAAADki/lg5swHAQAAAIAk0d/NnP4uAAC0TT7mH927d4+vfe1rsWnTpnjsscfizDPPzPkx8sH8I3MWJFIUjv0j3rVrV7z99tsFqia53n777di9e3faWHu8AcojM/JIlnzlAQAAkC/mg5kxHwQAAAAAkkZ/NzP6uwAA0Hb5nH9UVVXFtdde2y77bm/mH61jQSJF4ayzzoqSkpK0sWNXHtP0NenSpUt86EMfyvlx5JEZeSRLvvIAAADIF/PBzJgPAgAAAABJo7+bGf1dAABoO/OPzJh/tI4FiRSFioqK6N+/f9rY8uXLC1RNcj3//PNpt/v37x8VFRU5P448MiOPZMlXHgAAAPliPpgZ80EAAAAAIGn0dzOjvwsAAG1n/pEZ84/WsSCRonHFFVek3V66dGmBKkmuY1+TY1+zXJJHy+SRLPnMAwAAIF/MB1tmPggAAAAAJJH+bsv0dwEAIDfMP1pm/tE6FiRSNMaNG5d2e+3atfHKK68UqJrk2b59e7z88stpY8e+ZrkkjxOTR7LkOw8AAIB8MR88MfNBAAAAACCp9HdPTH8XAAByx/zjxMw/Ws+CRIrGJz/5yTj11FPTxubNm1egapLn29/+dtrt0047LUaNGtVux5PHickjWfKdBwAAQL6YD56Y+SAAAAAAkFT6uyemvwsAALlj/nFi5h+tZ0EiRaOsrCzGjh2bNjZv3rz4zW9+U6CKkmPjxo1NPgyuvfbaKCsra7djyqN58kiWQuQBAACQL+aDzTMfBAAAAACSTH+3efq7AACQW+YfzTP/yE5JKpVKFboIyNT27dvjox/9aNTX1x8dGzVqVKxYsSK6dOmc62sbGxtj9OjRsXLlyqNjFRUVsWnTpqiqqmrXY8ujKXkkSyHzSJq6urro1atXRETs27cvevbsWeCKAAAgdzr7+a75YFPmgwDQNp39/AoAAMifzj7/0N9tSn8XAADah/lHU+Yf2eucvzEUraqqqvjqV7+aNvbiiy/Gl770pWhsbCxQVYXT2NgYX/rSl9Le/CIipk2blpc3P3mkk0eyFDoPAACAfDEfTGc+CAAAAAAUC/3ddPq7AADQfsw/0pl/tI1vSKTo7N+/P84555zYuXNn2nhNTU089NBDnWZl9rtvfgsXLkwbr6ysjM2bN0f37t3zUoc8jpBHsiQljyTp7P9HQQAAOjbnu+aD7zIfBIDccH4FAADki/mH/u679HcBAKD9mX8cYf7Rdp3jN4UOpUePHrFgwYIoKytLG1+4cGGMHj06Nm7cWKDK8mfjxo0xevToJm9+ZWVl8fDDD+f1zU8e8kiaJOUBAACQL+aD5oMAAAAAQHHS39XfBQCAfDH/MP/IFQsSKUqXX355PPnkk03eBFeuXBnV1dVx2223xfbt2wtUXfvZvn173HbbbVFdXd3ka2HLysriySefjMsvvzzvdclDHkmQ1DwAAADyxXzQfBAAAAAAKE76u/q7AACQL+Yf5h+5UJJKpVKFLgKy9aMf/Siuu+66OHTo0HHvP//882PcuHFx2WWXxcCBA6NPnz55rrBt3n777di6dWs8//zzsXTp0nj55ZeP+7h33/yuueaaPFeYTh5HyCM/ii2PQqurq4tevXpFRMS+ffuiZ8+eBa4IAAByx/luOvPBI8wHASB7zq8AAIB8Mf9Ip797hP4uAAC0P/OPI8w/smNBIkXvueeeiy9+8YuxY8eOFh972mmnxcCBA+PMM8+MHj16REVFRXTpkowvCm1sbIz6+vrYv39//PGPf4ytW7fG7t27W3xeZWVlPPzww4lZiS0PebSHjpJHIWngAwDQkTnfbcp80HwQANrC+RUAAJAv5h9N6e/q7wIAQL6Yf5h/ZMuCRDqEAwcOxKxZs2L27NlRX19f6HLyoqKiIqZNmxZ33HFHdO/evdDlpJGHPAotyXkUigY+AAAdmfPd4zMfNB8EgGw5vwIAAPLF/OP49Hf1dwEAIF/MP8w/smFBIh3K9u3bY86cOfHUU0/Fnj17Cl1OuzjttNPi2muvjdtvvz2qqqoKXc4JySNZ5NG5aeADANCROd89MfNBAKC1nF8BAAD5Yv5xYvq7AABAvph/0BoWJNIhHTp0KF588cVYunRpLFu2LHbs2BHF+qteUlISlZWVccUVV8S4ceNi1KhRUVZWVuiyWkUeySKPzkkDHwCAjsz5bmbMBwGATDm/AgAA8sX8IzP6uwAAQL6Yf5AJCxLpFOrr6+PVV1+NrVu3xtatW+ONN96Id955J955551Cl5amW7du0a1btzj55JNj4MCBMXDgwPjQhz4UFRUVhS4tp+SRLPLoHDTwAQDoyJzvZqe95oMNDQ2xcOHCiIioqamJ8vLyNu3PfBAA8s/5FQAAkC/mH9nR3wUAAPLFegOOx4JEAOgENPABAOjInO8mizwAoPj5PAcAAPLF/CNZ5AEAAEAmuhS6AAAAAAAAAAAAAAAAAAAg+SxIBAAAAAAAAAAAAAAAAABaZEEiAAAAAAAAAAAAAAAAANAiCxIBAAAAAAAAAAAAAAAAgBZZkAgAAAAAAAAAAAAAAAAAtMiCRAAAAAAAAAAAAAAAAACgRRYkAgAAAAAAAAAAAAAAAAAtsiARAAAAAAAAAAAAAAAAAGiRBYkAAAAAAAAAAAAAAAAAQIssSAQAAAAAAAAAAAAAAAAAWmRBIgAAAAAAAAAAAAAAAADQIgsSAQAAAAAAAAAAAAAAAIAWWZAIAAAAAAAAAAAAAAAAALTIgkQAAAAAAAAAAAAAAAAAoEUWJAIAAAAAAAAAAAAAAAAALbIgEQAAAAAAAAAAAAAAAABokQWJAAAAAAAAAAAAAAAAAECLLEgEAAAAAAAAAAAAAAAAAFpkQSIAAAAAAAAAAAAAAAAA0KKyQhcA+VBfXx+vvPJKbN26NbZt2xavv/56vPPOO1FfX1/o0tJUVFREt27d4pRTTokBAwbEwIED46yzzoqKiopCl5ZT8kgWeSRLe+XR0NBw9N9vu+22KC8vb9P+5OHvAwAAAIDC009MFv1EAAAAAACgo3H9g+MpSaVSqUIXAbl26NCheOGFF2Lp0qWxbNmy2LlzZxTrr3pJSUn0798/rrjiihg3blx88pOfjLKy4lpLLI9kkUeyyCNZ5AEAUJzq6uqiV69eERGxb9++6NmzZ4Er6tzkAQDtR/8qWeQBAABtp5+YLPIAAABc/yATFiTSoWzbti2+9a1vxVNPPRV79uwpdDnt4tRTT42xY8fG7bffHlVVVYUu54TkkSzySBZ5JIs8AACKm/9AIlnkAQC5p3+VLPIAAIDc0U9MFnkAAEDn5foHrWFBIh3C/v37Y9asWTF79uw4ePBgocvJi4qKivjqV78ad9xxR/To0aPQ5aSRhzwKTR7JIo9kSXIeAADZ8h9IJIs8ACB39K+S1b+SR7LyAACgY9BPTBZ5AABA5+P6h+sf2bAgkaL33HPPxU033RQ7d+5s8bF9+/aNAQMGRL9+/aJHjx7RtWvX6NKlSx6qbFljY2McPHgw9u/fH3/4wx9i27ZtsWvXrhafV1lZGQ8//HBcfvnleaiyZfKQR3uQhzzagzySlQcAQFv4DySSRR4AkBv6V8nqX8kjWXkAANBx6CcmizwAAKBz6WjXPzZu3Bh/+tOfoqGhwfWPdmZBIkXtRz/6UVx33XVx6NCh497/sY99LMaNGxeXXnppDBw4MPr06ZPnCtvm7bffjq1bt8by5cvjySefjJdffvm4jysrK4snn3wyrrnmmjxXmE4eR8gjP+SRLPJIlmLLAwCgrfwHEskiDwBoO/2rI5LSv5LHEUnJAwCAjkU/MVnkAQAAnUdHuv7R2NgYd955Z8yePTt++MMfxjXXXOP6RzuzIJGi1dybX2lpaUyePDkmT54cZ511VoGqax/bt2+Pb3/72zFv3rw4fPhw2n2FfhOUhzwKTR7JIo9kSXIeAAC54D+QSBZ5AEDb6F8lq38lj2TlAQBAx6OfmCzyAACAzqEjXf84cOBAjB8/Pn7wgx9ERMSf/vSnOP3005s8zvWP3LIgkaL03HPPxVVXXdXkzW/UqFExf/78GDx4cIEqy4/f/OY3ccstt8SLL76YNl5WVhY/+clP8v51sfKQR5LII1nkkSxJywMAIFf8BxLJIg8AyJ7+VbL6V/JIVh4AAHRM+onJIg8AAOj4OtL1j127dsWYMWPiV7/6VUREVFZWxquvvnrC57j+kRsWJFJ09u/fH+ecc07s3LkzbbympiYeeuih6NKlS4Eqy6/Gxsb40pe+FAsXLkwbr6ysjM2bN0f37t3zUoc8jpBHssgjWeSRLEnJAwAgl/wHEskiDwDIjv7VEUnpX8njiKTkAQBAx6WfmCzyAACAjq0jXf/YtGlTXHXVVWk/y/XXXx/f/e53W3yu6x9tVzy/KfD/mzVrVod482urLl26xEMPPRQ1NTVp4zt27IhZs2blrQ55HCGPZJFHssgjWZKSBwAAAADp9K+OSEr/Sh5HJCUPAAAAAACg7TrK9Y/ly5fHyJEjm/wsI0aMyOj5rn+0nW9IpKhs27YtBg8eHPX19UfHRo0aFStWrCiqN79camxsjNGjR8fKlSuPjlVUVMSmTZuiqqqqXY8tj6bkkSzySBZ5JEsh8wAAyDX/x+ZkkQcAtJ7+VVP6icminwgAQHvRT0wWeQAAQMfVUa5/LFq0KG6++eY4dOhQk/t+/etfx7BhwzLel+sf2Sue3xiIiG9961tpb36lpaUxf/78onrzy7UuXbrE/Pnzo7S09OhYfX19zJkzp92PLY+m5JEs8kgWeSRLIfMAAAAAIJ3+VVP6icminwgAAAAAAMWt2K9/NDY2xrRp06Kmpua4ixG7d+8eQ4YMadU+Xf/IXnH81kBEHDp0KJ566qm0scmTJ8fgwYMLVFFynHvuuTF58uS0sR/+8IfHfZPNFXk0Tx7JIo9kkUeyFCIPAAAAANLpXzVPPzFZ9BMBAAAAAKA4Ffv1jwMHDsR1110X3/zmN5t9zLBhw6K8vLzV+3b9IzsWJFI0XnjhhdizZ0/a2LF/9J3ZpEmT0m7v3r07XnzxxXY7njxOTB7JIo9kkUey5DsPAAAAANLpX52YfmKy6CcCAAAAAEDxKebrH7t27YrRo0c3WVB5rBEjRmR9DNc/Ws+CRIrG0qVL025/7GMfi7POOqtA1SRPVVVVnH/++Wljx75muSSPE5NHssgjWeSRLPnOAwAAAIB0+lcnpp+YLPqJAAAAAABQfIr1+semTZviwgsvjF/96ldp4126NF0O15YFia5/tJ4FiRSNZcuWpd0eN25cgSpJrmNfk2Nfs1ySR8vkkSzySBZ5JEs+8wAAAAAgnf5Vy/QTk0U/EQAAAAAAiksxXv94/vnnY+TIkbFz58608ZNOOinmzJnT5PEf//jH23Q81z9ax4JEikJ9fX2TN5FLL720QNUk12WXXZZ2e+fOnVFfX5/z48gjM/JIFnkkizySJV95AAAAAJBO/yoz+onJop8IAAAAAADFoxivfyxcuDCuvPLKePvtt9PGKysr47//+7+jR48eTcZPP/30Nh3T9Y/WsSCRovDKK69EKpVKGzv77LMLVE1yDRw4MO12Y2NjvPrqqzk/jjwyI49kkUeyyCNZ8pUHAAAAAOn0rzKjn5gs+okAAAAAAFA8iun6R2NjY0ybNi1uuummOHz4cNp9F154YaxevTrOOeecWLVqVdp9I0aMaPOxXf9oHQsSKQpbt25Nu923b9/o3bt3gapJrj59+sRpp52WNnbsa5cL8siMPJJFHskij2TJVx4AAAAApNO/yox+YrLoJwIAAAAAQPEolusf+/fvj+uuuy6++c1vHvf+xx9/PPr27RsR0S4LEl3/aB0LEikK27ZtS7s9YMCAAlWSfMeuym6PN0B5ZE4eySKPZJFHsuQjDwAAAADS6V9lTj8xWfQTAQAAAACgOBTL9Y8333wzDhw40Oz9Z599dlx55ZXx+uuvx+9+97u0+3KxIDHC9Y/WsCCRovD666+n3e7Xr1+BKkm+M888M+32G2+8kfNjyCNz8kgWeSSLPJIlH3kAAAAAkE7/KnP6icminwgAAAAAAMWhWK5/nHnmmfFf//Vf8cwzz0RlZeVxH/Pss8/GqaeemjbWvXv3GDJkSM5qeC/XP5pnQSJF4Z133km73aNHjwJVknzHvjbHvna5II/MySNZ5JEs8kiWfOQBAAAAQDr9q8zpJyaLfiIAAAAAABSHJF//OHz4cBw+fPjo7ZKSkhgzZkxs3rw5Zs6cmdE+hg0bFuXl5Tmpx/WPzJUVugDIRH19fdrtrl27FqiS5KuoqEi73R5vgPLInDySRR7JIo9kyUceAAAAAKTTv8qcfmKy6CcCAAAAAEBxKPT1j4MHD8b69evTtk2bNsXevXujoaEhIiLKy8ujd+/e8dGPfjSGDBkSQ4YMiQ9+8IMZ7X/EiBE5q9X1j8xZkEhR6tLFl3s2pxCvjTyaJ49kkUeyyCNZvDYAAAAAhadH0zz9xGTx2gAAAAAAQHHKV49/3bp18cgjj8R//Md/xJtvvnnCxzY0NMSbb74ZK1eujJUrV7bqOLlckOj6R+YsSAQAAAAAAAAAAAAAAAAga4cOHYp///d/j4ceeijWrVuX8/1fddVVsXz58rRvffz4xz+e8+PQMgsSAQAAAAAAAAAAAAAAAMjKqlWr4uabb47169e32zF+8pOfxKBBg+L9739/rFq1KiorK+P0009vt+PRPAsSAQAAAAAAAAAAAAAAAGiVN954I+64445YtGjRCR939tlnx5AhQ45uZ5xxRlRUVERERH19fbz22muxfv36+PrXv572DYjH+u1vfxsREZdddlkMHjw4dz8IrWJBIgAAAAAAAAXV0NAQe/fujYiI3r17R3l5eYErAgAAAAAgE/q7AJ3XunXr4u/+7u/itddeO+79/fr1ixtvvDE+//nPR1VV1Qn3VV1dHSeffHLcddddGR37+eefj82bN8f48eNj6NChrS2dNupS6AIAAAAAAADofNatWxdTpkyJ4cOHR69eveLkk0+Ok08+OXr16hXDhw+PKVOmxPr16wtdJgAAAAAAx9DfBeDZZ5+Niy666LiLEQcPHhw//elP49VXX4177rmnxcWIERGpVCpGjhzZZPyBBx6In/70p8f9NsTXXnstLrroonj22Wez+yHImgWJAAAAAAAA5M2GDRti1KhRUV1dHfPmzYs1a9bEwYMHj95/8ODBWLNmTcybNy+GDh0ao0aNig0bNhSwYgAAAAAAIvR3ATjixz/+cYwZMybq6urSxnv27Blz5syJl19+OT796U9HaWlpxvucMWPGccdvvfXW+PSnPx0vv/xyzJkzJ3r27Jl2f11dXVx99dXx4x//uPU/CFmzIBEAAAAAAIB2l0qlYtasWTFs2LBYuXJlxs9buXJlDBs2LGbNmhWpVKodKwQAAAAA4Hj0dwF410svvRRjx46NhoaGtPGLL744tmzZElOnTo3y8vJW7XPv3r1RW1vbZHzLli1H/728vDymTp0aW7ZsiYsuuijtcQcPHoyxY8fGSy+91Krjkj0LEgEAAAAAAGhXqVQqJk+eHNOnT29ycTITDQ0NMX369Jg8ebL/aAUAAAAAII/0dwF411/+8pe44YYbmnweXH/99fH8889Hv379stpvVVVVk7Hq6uoYNGhQk/F+/frF8uXL4/rrr08bb2hoiBtuuCH++te/ZlUDrdPhFyQ+8cQT8cUvfjGGDRsWFRUVUVJSEosXLy50WSTcjh07oqSkJG0rLy+PM844I6677rpYs2ZN2uP37t0blZWV0a1bt9i8efNx9zl79uwoKSmJL3zhC/n4EToUeSRTprk8+OCDUVJSEhMmTGh2Xz//+c+jS5cuMXz48Dh06FC+foQORR7JIg8AAACAdLNnz4758+e3eT/z58+P2bNn56Cizk3/KlnkAQAAAECS6e8CEHFkgXpNTU38/ve/TxufOHFiPP7441FRUZHVfletWhV79uxpMr569epmn1NRURGPP/54TJw4MW3897//fdTU1FgAnwdlhS6gvd11112xc+fOOOWUU+Jv/uZvYufOnYUuiSJSVVUVn/vc5yIioq6uLtauXRtLly6Np59+OpYvXx6jRo2KiIjevXvHI488Epdeeml8/vOfj1WrVkVZ2f/+eW3cuDFmzpwZ/fv3jwceeKAgP0tHII9kaimXr3zlK/HMM8/E4sWL49prr42///u/T3v+vn37YsKECVFRURGPPfZYWla0njySRR4AAAAAERs2bIiZM2fmbH8zZ86Mz3zmM3HeeeflbJ+dlf5VssgDAAAAgKTR3wXgXQsXLoynnnoqbWz06NGxYMGCKC0tzWqfqVQqRo4c2WR87ty50bVr1xM+t7S0NBYsWBDbt2+PF1544ej4D37wg1i0aFHU1NRkVROZ6fDfkLho0aLYsWNH7NmzJ770pS8VuhyKzIABA+Luu++Ou+++O+6777742c9+FrW1tdHQ0BD/8i//kvbYT33qU3HLLbfEmjVr4t577z063tDQEOPHj4+GhoZ49NFHo3fv3vn+MToMeSRTS7m8+820ffr0iZqamnjjjTfSnj916tTYsWNH1NbWxkc+8pEC/RQdhzySRR4AAAAAEZMmTYqGhoac7a+hoSEmTZqUs/11ZvpXySIPAAAAAJJGfxeAiIj9+/fH9OnT08Y+8IEPxBNPPJH1YsSIiBkzZhx3fMqUKRk9v7S0NJ544on4wAc+kDY+ffr02L9/f9Z10bIOvyDx0ksvjf79+xe6DDqQf/qnf4qIiLVr1za5b/bs2TFgwID4xje+EevWrYuIiHvuuSfWrVsXkydPjksuuSSfpXYK8kimY3Pp379/PPjgg7Fr1664+eabjz5u2bJlsWDBgrjkkkviK1/5SkFq7QzkkSzyAAAAADqTdevWxcqVK3O+35UrV8b69etzvl/0r5JGHgAAAAAUiv4uAO9avHhxvPnmm2ljjz76aJxxxhlZ73Pv3r1RW1vbZHzLli2t2s+ZZ54ZjzzySNrYG2+8EUuWLMm6NlrW4RckQnspKytrMtajR49YvHhxHD58OMaPHx+/+MUvora2Nj784Q/HrFmzClBl5yGPZHpvLhMmTIgxY8bE0qVL43vf+1789a9/jS984QvRp0+fePTRR6OkpKSAlXYO8kgWeQAAAACdwbEX/4pl3+hfJY08AAAAAMg3/V0AIiIOHz4c999/f9rYlVdeGWPGjGnTfquqqpqMVVdXx6BBg1q9r6uvvjquvPLKtLH7778/Dh8+nHV9nJgFidBKixYtioiIiy666Lj3f+ITn4h//ud/jo0bN8all14aERFLliyJ7t27563GzkQeydRcLgsWLIhTTjklbrnllrjxxhvjj3/8Yzz44IO+ybadySNZ5AEAAAB0JqtWrSrKfXdm+lfJIg8AAAAACkV/F4CIiGeeeSa2b9+eNnb77be3aZ+rVq2KPXv2NBlfvXp11vucOnVq2u1t27bFf/7nf2a9P06s6VeKkWipVCr2799f6DLyrqGhoSDH3bZtW9x9990REVFXVxdr166NFStWRN++feO+++5r9nkzZ86M+fPnx4EDB2LSpElx4YUX5qniphoaGqKuri7n+ywEeTS/z0JqTS59+/aNhx9+OMaOHRvPPPNMjBkzJiZMmFCAqo+QhzzamzwAAPLjvectzmEKTx4AvKuhoSE2bNjQbvvfsGFDvPXWW2nfHFds9K+yp5/Y8fMAAKBz0E9MFnkA8C79XYCOo63XP5588sm029XV1XHJJZdkvb9UKhUjR45sMj537tzo2rVr1vv91Kc+FUOHDo1169YdHfv+978f11xzTdb75ARSnUhtbW0qIlKPPvpooUvJ2r59+1IR0em3L3/5y+36Or/66qvNHvv0009Pbd269YTPnzlz5tHHDxgwIFVXV9eu9b7Xl7/8ZXkcQx7toy25XHDBBamISG3evDkvtb5LHscnj9yTh81ms9lsNpvNZrPZbDabLZtN/6p5+onH15nysNlsNpvNZrPZbDabzWaz2Ww2m83W9q211z/69++f9vx/+7d/a9M1hunTpx+3rlz4zne+k7bPysrKVj3/2Osf+bpWVIy6BNCsK664IlKpVKRSqdi9e3fcd999sXv37hgzZkzs27fvuM9Zu3Zt3HvvvfHhD384br/99ti2bVtMnz49z5V3TPJIpmxy6d69e9o/yR15JIs8AAAAAEgy/atkkQcAAAAAAJAkf/7zn2Pnzp1pYxdddFHW+9u7d2/U1tY2Gd+yZUvW+3yvY2vbsWNH7Nq1Kyf7Jp3vOC4yPXr0aPaCY0d22223xcKFCwtaw6mnnhq33357vPXWW/GNb3wj7rrrrnjwwQfTHlNfXx/jx4+PVCoVS5YsifPPPz+ee+65mDdvXowdOzZGjRqV97pramrigQceyOk+5ZG9jprHuzLJJUnkkSzySJb2yAMAoL3U1dVF3759IyJi165d0bNnzwJX1LnJA4B3NTQ0RN++fePgwYPtsv+KiorYtWtXlJUV7+Uu/avs6Scmi34iAADZ0k9MFnkA8C79XYCOoy3XP375y1+m3e7du3d85CMfybqWqqqqJmPV1dUxaNCgrPf5Xuecc0706tUrbd3VL3/5yxgzZkxO9s//8gleZEpKSjrlJL+8vLzQJRx15513xiOPPBLf+c534tZbb43Kysqj9911112xefPmmD59elx44YUREbFkyZK44IILYuLEibFhw4bo0aNHXustLy/P+e+MPLLX0fN414lySRJ5JIs8kqU98gAAyIeePXs6j0kQeQBw3nnnxZo1a9pt3yeddFK77Dtf9K+yp5+YLPqJAADkgn5issgDAP1dgI6hLdc/1q9fn3Z7+PDhUVpamtW+Vq1aFXv27Gkyvnr16qz2dzylpaUxfPjwWLFixdGxdevWWZDYDroUugAoNt27d49p06ZFQ0NDfP3rXz86/tJLL8X9998f5557btx9991Hx4cOHRozZsyI7du3x7Rp0wpQcccmj2RqLhcKQx7JIg8AAACgMxkxYkRR7rsz079KFnkAAAAAUCj6uwDs3bs37Xa/fv2y2k8qlYqRI0c2GZ87d2507do1q30259ga3/ttieROh1+QuGjRorjxxhvjxhtvjKVLlzYZW7RoUYErpBjddNNN8bd/+7fx2GOPxfbt26Ouri5uvPHGKC0tjSVLljR5Q5wxY0ZUV1fH/Pnz44UXXihQ1R2XPJLp2FwoLHkkizwAAACAzmLixIlFue/OTv8qWeQBAAAAQCHo7wIwZMiQ+OxnPxtXX311XH755XHuuedmtZ8ZM2Ycd3zKlCltKe+4zjvvvLj88svj6quvjs9+9rMxZMiQnB+DTrAg8Re/+EUsWbIklixZEi+//HJEHPnmtHfHfvGLXxS4QopRt27dYvr06XHo0KH42te+Fl/96ldj27Ztcdddd0V1dXWTx5eVlcWSJUuivLw8JkyYEHV1dQWouuOSRzIdmwuFJY9kkQcAAADQWQwdOjQuvvjinO/34osvdvGwHelfJYs8AAAAACgE/V0APve5z8X3vve9ePrpp2PZsmUxderUVu9j7969UVtb22R8y5YtuSixialTp8ayZcvi6aefju9973vxj//4j+1ynM6urNAFtLfFixfH4sWLC10GRaaysjJSqdQJHzNp0qSYNGnS0dvz588/4ePPPffcqK+vz0l9nY08kimbXN7185//vJ2q6rzkkSzyAAAAAPhf3/72t2PYsGHR0NCQk/2Vl5e32APmxPSvkkUeAAAAACSV/i4AbVVVVdVkrLq6OgYNGlSAasiVDv8NiQAAAAAAABTOeeedF/fcc0/O9nfPPffEueeem7P9AQAAAABwfPq7ALTFqlWrYs+ePU3GV69eXYBqyCULEgEAAAAAAGhX06ZNi1tuuaXN+5k0aVJMmzYtBxUBAAAAAJAJ/V0AspFKpWLkyJFNxufOnRtdu3YtQEXkkgWJAAAAAAAAtKuSkpKYN29e1NbWRnl5eaufX15eHrW1tfGv//qvUVJS0g4VAgAAAABwPPq7AGRjxowZxx2fMmVKniuhPViQCAAAAAAAQLsrKSmJO+64I9asWRMXX3xxxs+7+OKLY+3atXHHHXf4j1UAAAAAAApAfxeA1ti7d2/U1tY2Gd+yZUsBqqE9lBW6AAAAAAAAADqP8847L1588cVYv359PPLII7Fq1apYv359HDx4MCIiKioq4rzzzosRI0bExIkTY8iQIQWuGAAAAACACP1dADJTVVXVZKy6ujoGDRpUgGpoDxYkAgAAAAAAkHdDhgyJuXPnRkTEW2+9Fe973/siImLXrl1x0kknFbAyAAAAAABORH8XgOasWrUq9uzZ02R89erVBaiG9tKl0AUAAAAAAADQuZWVlR333wEAAAAASDb9XQDelUqlYuTIkU3G586dG127di1ARbQXCxIBAAAAAAAAAAAAAAAAyNqMGTOOOz5lypQ8V0J7syARAAAAAAAAAAAAAAAAgKzs3bs3amtrm4xv2bKlANXQ3ixIBAAAAAAAAAAAAAAAACArVVVVTcaqq6tj0KBBBaiG9mZBIkWpsbGx0CUkViFeG3k0Tx7JIo9kkUeyeG0AAAAACk+Ppnn6icnitQEAAAAAgOLUHj3+3/72t7Fnz54m46tXr875sdqT6x+ZsyCRolBRUZF2++DBgwWqJPnq6+vTbnfr1i3nx5BH5uSRLPJIFnkkSz7yAAAAACCd/lXm9BOTRT8RAAAAAACKQ3tf/0ilUnHrrbc2GZ87d2507do1p8dqb65/ZM6CRIrCsX/E+/fvL1AlyXfsa9Meb4DyyJw8kkUeySKPZMlHHgAAAACk07/KnH5isugnAgAAAABAcWjv6x+7d++O//mf/0kbe//73x9TpkzJ6XHywfWPzFmQSFE45ZRT0m7/4Q9/KFAlyffHP/4x7fbJJ5+c82PII3PySBZ5JIs8kiUfeQAAAACQTv8qc/qJyaKfCAAAAAAAxaG9r3/07ds3Nm/eHDNnzoyKioro2bNnbNiwIafHyBfXPzJnQSJFYcCAAWm3t23bVqBKkm/r1q1ptwcOHJjzY8gjc/JIFnkkizySJR95AAAAAJBO/ypz+onJop8IAAAAAADFIR/XP7p37x5f+9rXYtOmTfHYY4/FmWeemfNj5IPrH5mzIJGicOwf8a5du+Ltt98uUDXJ9fbbb8fu3bvTxtrjDVAemZFHssgjWeSRLPnKAwAAAIB0+leZ0U9MFv1EAAAAAAAoHvm8/lFVVRXXXnttu+y7vbn+0ToWJFIUzjrrrCgpKUkbO3blMU1fky5dusSHPvShnB9HHpmRR7LII1nkkSz5ygMAAACAdPpXmdFPTBb9RAAAAAAAKB6uf2TG9Y/WsSCRolBRURH9+/dPG1u+fHmBqkmu559/Pu12//79o6KiIufHkUdm5JEs8kgWeSRLvvIAAAAAIJ3+VWb0E5NFPxEAAAAAAIqH6x+Zcf2jdSxIpGhcccUVabeXLl1aoEqS69jX5NjXLJfk0TJ5JIs8kkUeyZLPPAAAAABIp3/VMv3EZNFPBAAAAACA4uL6R8tc/2gdCxIpGuPGjUu7vXbt2njllVcKVE3ybN++PV5++eW0sWNfs1ySx4nJI1nkkSzySJZ85wEAAABAOv2rE9NPTBb9RAAAAAAAKD6uf5yY6x+tZ0EiReOTn/xknHrqqWlj8+bNK1A1yfPtb3877fZpp50Wo0aNarfjyePE5JEs8kgWeSRLvvMAAAAAIJ3+1YnpJyaLfiIAAAAAABQf1z9OzPWP1rMgkaJRVlYWY8eOTRubN29e/OY3vylQRcmxcePGJh8G1157bZSVlbXbMeXRPHkkizySRR7JUog8AAAAAEinf9U8/cRk0U8EAAAAAIDi5PpH81z/yE5JKpVKFboIyNT27dvjox/9aNTX1x8dGzVqVKxYsSK6dOmc62sbGxtj9OjRsXLlyqNjFRUVsWnTpqiqqmrXY8ujKXkkizySRR7JUsg8AAByra6uLnr16hUREfv27YuePXsWuKLOTR4AZKOzf37oXzWln5gs+okAALSXzj4fTBp5AJANnx8AxcH1j6Zc/8he5/yNoWhVVVXFV7/61bSxF198Mb70pS9FY2NjgaoqnMbGxvjSl76U9uYXETFt2rS8vPnJI508kkUeySKPZCl0HgAAAACk079KV+j+lTzSFToPAAAAAACg7Vz/SOf6R9v4hkSKzv79++Occ86JnTt3po3X1NTEQw891GlWZr/75rdw4cK08crKyti8eXN07949L3XI4wh5JIs8kkUeyZKUPAAAcsn/cTNZ5AFANnx+6F+9Kyn9K3kckZQ8AADouMwHk0UeAGTD5wdA8XD94wjXP9quc/ym0KH06NEjFixYEGVlZWnjCxcujNGjR8fGjRsLVFn+bNy4MUaPHt3kza+srCwefvjhvL75yUMeSSOPZJFHsiQpDwAAAADS6V8lq38lj2TlAQAAAAAAtJ3rH65/5IoFiRSlyy+/PJ588skmb4IrV66M6urquO2222L79u0Fqq79bN++PW677baorq5u8rWwZWVl8eSTT8bll1+e97rkIY8kkEeyyCNZkpoHAAAAAOn0r5LVv5JHsvIAAAAAAADazvUP1z9yoSSVSqUKXQRk60c/+lFcd911cejQoePef/7558e4cePisssui4EDB0afPn3yXGHbvP3227F169Z4/vnnY+nSpfHyyy8f93Hvvvldc801ea4wnTyOkEd+yCNZ5JEsxZYHAEBb1dXVRa9evSIiYt++fdGzZ88CV9S5yQOAbPj8SKd/dURS+lfyOCIpeQAA0LGYDyaLPADIhs8PgOLk+scRrn9kx4JEit5zzz0XX/ziF2PHjh0tPva0006LgQMHxplnnhk9evSIioqK6NIlGV8U2tjYGPX19bF///744x//GFu3bo3du3e3+LzKysp4+OGHE7MSWx7yaA/ykEd7kEey8gAAaAsXuJJFHgBkw+dHU/pXyepfySNZeQAA0HGYDyaLPADIhs8PgOLl+ofrH9myIJEO4cCBAzFr1qyYPXt21NfXF7qcvKioqIhp06bFHXfcEd27dy90OWnkIY9Ck0eyyCNZkpwHAEC2XOBKFnkAkA2fH8enf5Ws/pU8kpUHAAAdg/lgssgDgGz4/AAobq5/uP6RDQsS6VC2b98ec+bMiaeeeir27NlT6HLaxWmnnRbXXntt3H777VFVVVXock5IHskij2SRR7LIAwCguLnAlSzyACAbPj9OTP8qWeQBAAC5Yz6YLPIAIBs+PwA6Btc/aA0LEumQDh06FC+++GIsXbo0li1bFjt27Ihi/VUvKSmJysrKuOKKK2LcuHExatSoKCsrK3RZrSKPZJFHssgjWeQBAFCcXOBKFnkAkA2fH5nRv0oWeQAAQNuZDyaLPADIhs8PgI7F9Q8yYUEinUJ9fX28+uqrsXXr1ti6dWu88cYb8c4778Q777xT6NLSdOvWLbp16xYnn3xyDBw4MAYOHBgf+tCHoqKiotCl5ZQ8kkUeySKPZGmvPBoaGmLhwoUREVFTUxPl5eVt2l9nyQMAoDkucCWLPADIhs+P7OgnJot+IgAAtJ75YLLIA4Bs+PwA6Nhcj+J4LEgEAMgzDRgAgNxyfpUs8gAgGz4/oHn+PgAA6Mic7yaLPADIhs8PAOh8uhS6AAAAAAAAAAAAAAAAAAAg+SxIBAAAAAAAAAAAAAAAAABaZEEiAAAAAAAAAAAAAAAAANAiCxIBAAAAAAAAAAAAAAAAgBZZkAgAAAAAAAAAAAAAAAAAtMiCRAAAAAAAAAAAAAAAAACgRRYkAgAAAAAAAAAAAAAAAAAtsiARAAAAAAAAAAAAAAAAAGiRBYkAAAAAAAAAAAAAAAAAQIssSAQAAAAAAAAAAAAAAAAAWmRBIgAAAAAAAAAAAAAAAADQIgsSAQAAAAAAAAAAAAAAAIAWWZAIAAAAAAAAAAAAAAAAALTIgkQAAAAAAAAAAAAAAAAAoEUWJAIAAAAAAAAAAAAAAAAALbIgEQAAAAAAAAAAAAAAAABokQWJAAAAAAAAAAAAAAAAAECLLEgEAAAAAAAAAAAAAAAAAFpkQSIAAAAAAAAAAAAAAAAA0KKyQhcA+VBfXx+vvPJKbN26NbZt2xavv/56vPPOO1FfX1/o0tJUVFREt27d4pRTTokBAwbEwIED46yzzoqKiopCl5ZT8kgWeQAAAEDhmZ8DAAAAABQn/V0AADoy57scjwWJdEiHDh2KF154IZYuXRrLli2LnTt3RiqVKnRZWSkpKYn+/fvHFVdcEePGjYtPfvKTUVZWXH+68kgWeQAAAEDhmZ8DAAAAABQn/V0AADoy57tkoiRVrL8VcBzbtm2Lb33rW/HUU0/Fnj17Cl1Ouzj11FNj7Nixcfvtt0dVVVWhyzkheSSLPCA56urqolevXhERsW/fvujZs2eBKwIAKG7Or5JFHidmfg5wfD4/oHn+PgAA6Mic7yaLPE5Mfxfg+Hx+AHQMzndpDQsS6RD2798fs2bNitmzZ8fBgwcLXU5eVFRUxFe/+tW44447okePHoUuJ4085FFoSc4DIjRgAAByzflVssjj+MzPzc+BE/P5Ac3z9wEAQEfmfDdZ5HF8+rv6u8CJ+fwAKG7Od53vZsOCRIrec889FzfddFPs3Lmzxcf27ds3BgwYEP369YsePXpE165do0uXLnmosmWNjY1x8ODB2L9/f/zhD3+Ibdu2xa5du1p8XmVlZTz88MNx+eWX56HKlslDHu2ho+QB79KAAQDILedXySKPpszPzc+Blvn8gOb5+wAAoCNzvpss8mhKf1d/F2iZzw+A4tXRznc3btwYf/rTn6KhocH5bjuzIJGi9qMf/Siuu+66OHTo0HHv/9jHPhbjxo2LSy+9NAYOHBh9+vTJc4Vt8/bbb8fWrVtj+fLl8eSTT8bLL7983MeVlZXFk08+Gddcc02eK0wnjyPkkR/Flge8lwYMAEBuOb9KFnmkMz8/wvwcaInPD2ievw8AADoy57vJIo90+rtH6O8CLfH5AVCcOtL5bmNjY9x5550xe/bs+OEPfxjXXHON8912ZkEiRau5N7/S0tKYPHlyTJ48Oc4666wCVdc+tm/fHt/+9rdj3rx5cfjw4bT7Cv0mKA95FFqS84BjacAAAOSW86tkkcf/Mj83Pwcy5/MDmufvAwCAjsz5brLI43/p7+rvApnz+QFQfDrS+e6BAwdi/Pjx8YMf/CAiIv70pz/F6aef3uRxzndzy4JEitJzzz0XV111VZM3v1GjRsX8+fNj8ODBBaosP37zm9/ELbfcEi+++GLaeFlZWfzkJz/J+9fFykMeSZK0POB4NGAAAHLL+VWyyOMI83Pzc6B1fH5A8/x9AADQkTnfTRZ5HKG/q78LtI7PD4Di0pHOd3ft2hVjxoyJX/3qVxERUVlZGa+++uoJn+N8Nze6FLoAaK39+/fHTTfd1OTNr6amJlasWFFUb37ZGjx4cKxYsSJqamrSxg8dOhRf/OIX48CBA3mrRR7ySJok5QEAAEDnZH5ufg4AAAAAFCf9Xf1dAICOrCOd727atCkuvPDCo4sRIyJGjBjR4vOc7+aGBYkUnVmzZsXOnTvTxmpqauKhhx6KLl06z690ly5d4qGHHmryJrhjx46YNWtW3uqQxxHySJak5AEAAEDnZH5+hPk5AAAAAFBs9HeP0N8FAOiYOsr57vLly2PkyJFNfpZMFiRGON/NhZJUKpUqdBGQqW3btsXgwYOjvr7+6NioUaNixYoVRfXml0uNjY0xevToWLly5dGxioqK2LRpU1RVVbXrseXRlDySpZB5wInU1dVFr169IiJi37590bNnzwJXBABQ3JxfJUtnz8P8vCnzcyATnf3zA07E3wcAAB2Z891k6ex56O82pb8LZKKzf34AFIuOcr67aNGiuPnmm5t8y2NExK9//esYNmxYxvtyvpu94vmNgYj41re+lfbmV1paGvPnzy+qN79c69KlS8yfPz9KS0uPjtXX18ecOXPa/djyaEoeyVLIPAAAAOiczM+bMj8HAAAAAIqB/m5T+rsAAB1HsZ/vNjY2xrRp06Kmpua4ixG7d+8eQ4YMadU+ne9mrzh+ayAiDh06FE899VTa2OTJk2Pw4MEFqig5zj333Jg8eXLa2A9/+MPjvsnmijyaJ49kKUQeAAAAdE7m580zPwcAAAAAkkx/t3n6uwAAxa/Yz3cPHDgQ1113XXzzm99s9jHDhg2L8vLyVu/b+W52LEikaLzwwguxZ8+etLFj/+g7s0mTJqXd3r17d7z44ovtdjx5nJg8kiXfeQAAANA5mZ+fmPk5AAAAAJBU+rsnpr8LAFDcivl8d9euXTF69OgmCyqPNWLEiKyP4Xy39SxIpGgsXbo07fbHPvaxOOusswpUTfJUVVXF+eefnzZ27GuWS/I4MXkkS77zAAAAoHMyPz8x83MAAAAAIKn0d09MfxcAoLgV6/nupk2b4sILL4xf/epXaeNdujRdDteWBYnOd1vPgkSKxrJly9Jujxs3rkCVJNexr8mxr1kuyaNl8kiWfOYBAABA52R+3jLzcwAAAAAgifR3W6a/CwBQvIrxfPf555+PkSNHxs6dO9PGTzrppJgzZ06Tx3/84x9v0/Gc77aOBYkUhfr6+iZvIpdeemmBqkmuyy67LO32zp07o76+PufHkUdm5JEs+coDAACAzsn8PDPm5wAAAABA0ujvZkZ/FwCgOBXj+e7ChQvjyiuvjLfffjttvLKyMv77v/87evTo0WT89NNPb9Mxne+2jgWJFIVXXnklUqlU2tjZZ59doGqSa+DAgWm3Gxsb49VXX835ceSRGXkkS77yAAAAoHMyP8+M+TkAAAAAkDT6u5nR3wUAKE7FdL7b2NgY06ZNi5tuuikOHz6cdt+FF14Yq1evjnPOOSdWrVqVdt+IESPafGznu61jQSJFYevWrWm3+/btG7179y5QNcnVp0+fOO2009LGjn3tckEemZFHsuQrDwAAADon8/PMmJ8DAAAAAEmjv5sZ/V0AgOJULOe7+/fvj+uuuy6++c1vHvf+xx9/PPr27RsR0S4LEp3vto4FiRSFbdu2pd0eMGBAgSpJvmNXZbfHG6A8MiePZMlHHgAAAHRO5ueZMz8HAAAAAJJEfzdz+rsAAMWnWM5333zzzThw4ECz95999tlx5ZVXxuuvvx6/+93v0u7LxYLECOe7rWFBIkXh9ddfT7vdr1+/AlWSfGeeeWba7TfeeCPnx5BH5uSRLPnIAwAAgM7J/Dxz5ucAAAAAQJLo72ZOfxcAoPgUy/numWeeGf/1X/8VzzzzTFRWVh73Mc8++2yceuqpaWPdu3ePIUOG5KyG93K+2zwLEikK77zzTtrtHj16FKiS5Dv2tTn2tcsFeWROHsmSjzwAAADonMzPM2d+DgAAAAAkif5u5vR3AQCKT5LPdw8fPhyHDx8+erukpCTGjBkTmzdvjpkzZ2a0j2HDhkV5eXlO6nG+m7myQhcAmaivr0+73bVr1wJVknwVFRVpt9vjDVAemZNHsuQjDwAAADon8/PMmZ8DAAAAAEmiv5s5/V0AgOJT6PPdgwcPxvr169O2TZs2xd69e6OhoSEiIsrLy6N3797x0Y9+NIYMGRJDhgyJD37wgxntf8SIETmr1flu5ixIpCh16eLLPZtTiNdGHs2TR7J4bQAAAMgXc9DmeW0AAAAAgCTTw2ye1wYAoPjl65xu3bp18cgjj8R//Md/xJtvvnnCxzY0NMSbb74ZK1eujJUrV7bqOLlckOh8N3MWJAIAAAAAAAAAAAAAAACQtUOHDsW///u/x0MPPRTr1q3L+f6vuuqqWL58edq3Pn784x/P+XFomQWJAAAAAAAAAAAAAAAAAGRl1apVcfPNN8f69evb7Rg/+clPYtCgQfH+978/Vq1aFZWVlXH66ae32/FongWJAAAAAAAAAAAAAAAAALTKG2+8EXfccUcsWrTohI87++yzY8iQIUe3M844IyoqKiIior6+Pl577bVYv359fP3rX0/7BsRj/fa3v42IiMsuuywGDx6cux+EVrEgEQAgzxoaGo777xRGQ0ND7N27NyIievfuHeXl5QWuCAAAAAD+l34iNE9/FwAAAACgcNatWxd/93d/F6+99tpx7+/Xr1/ceOON8fnPfz6qqqpOuK/q6uo4+eST46677sro2M8//3xs3rw5xo8fH0OHDm1t6bRRl0IXAADQGaxbty6mTJkSw4cPj759+x4d79u3bwwfPjymTJnSrl9RTrr35tGrV684+eST4+STT45evXrJAwAAAICC00+E5unvAgAAAAAU3rPPPhsXXXTRcRcjDh48OH7605/Gq6++Gvfcc0+LixEjIlKpVIwcObLJ+AMPPBA//elPj/ttiK+99lpcdNFF8eyzz2b3Q5A1CxIBANrRhg0bYtSoUVFdXR3z5s2LNWvWxMGDB4/ef/DgwVizZk3Mmzcvhg4dGqNGjYoNGzYUsOKOTR4AAAAAJJn+FTTP3wcAAAAAQDL8+Mc/jjFjxkRdXV3aeM+ePWPOnDnx8ssvx6c//ekoLS3NeJ8zZsw47vitt94an/70p+Pll1+OOXPmRM+ePdPur6uri6uvvjp+/OMft/4HIWsWJAIAtINUKhWzZs2KYcOGxcqVKzN+3sqVK2PYsGExa9asSKVS7Vhh5yIPAAAAAJJM/wqa5+8DAAAAACA5XnrppRg7dmw0NDSkjV988cWxZcuWmDp1apSXl7dqn3v37o3a2tom41u2bDn67+Xl5TF16tTYsmVLXHTRRWmPO3jwYIwdOzZeeumlVh2X7FmQCACQY6lUKiZPnhzTp09vcrKdiYaGhpg+fXpMnjzZfySRA/IAAAAAIMn0r6B5/j4AAAAAAJLjL3/5S9xwww1N+rXXX399PP/889GvX7+s9ltVVdVkrLq6OgYNGtRkvF+/frF8+fK4/vrr08YbGhrihhtuiL/+9a9Z1UDrdOgFia+99lo8+OCDcfnll8cHP/jB6Nq1a5x++ukxduzY+OUvf1no8kiwHTt2RElJSdpWXl4eZ5xxRlx33XWxZs2atMfv3bs3Kisro1u3brF58+bj7nP27NlRUlISX/jCF/LxI3Qo8kimTHN58MEHo6SkJCZMmNDsvn7+859Hly5dYvjw4XHo0KF8/QjQbmbPnh3z589v837mz58fs2fPzkFFnZs8AADoyMzPAaD46V9B8/x9AADQkenvAgBQTFKpVNTU1MTvf//7tPGJEyfG448/HhUVFVntd9WqVbFnz54m46tXr272ORUVFfH444/HxIkT08Z///vfR01Njf9BXR6UFbqA9jRv3ryYPXt2VFVVxeWXXx6nnnpqbN26NZ5++ul4+umn47vf/W78wz/8Q6HLJMGqqqric5/7XERE1NXVxdq1a2Pp0qXx9NNPx/Lly2PUqFEREdG7d+945JFH4tJLL43Pf/7zsWrVqigr+98/r40bN8bMmTOjf//+8cADDxTkZ+kI5JFMLeXyla98JZ555plYvHhxXHvttfH3f//3ac/ft29fTJgwISoqKuKxxx5LywqK0YYNG2LmzJk529/MmTPjM5/5TJx33nk522dnIg8AADoL83MAKE76V9A8fx8AAHQW+rsAABSDhQsXxlNPPZU2Nnr06FiwYEGUlpZmtc9UKhUjR45sMj537tzo2rXrCZ9bWloaCxYsiO3bt8cLL7xwdPwHP/hBLFq0KGpqarKqicx06G9IvOCCC+LnP/95bNu2LRYtWhS1tbXxgx/8IFasWBGlpaVx8803R319faHLJMEGDBgQd999d9x9991x3333xc9+9rOora2NhoaG+Jd/+Ze0x37qU5+KW265JdasWRP33nvv0fGGhoYYP358NDQ0xKOPPhq9e/fO94/RYcgjmVrKpaSkJBYvXhx9+vSJmpqaeOONN9KeP3Xq1NixY0fU1tbGRz7ykQL9FJA7kyZNavI15G3R0NAQkyZNytn+Oht5AADQWZifA0Bx0r+C5vn7AACgs9DfBQAg6fbv3x/Tp09PG/vABz4QTzzxRNaLESMiZsyYcdzxKVOmZPT80tLSeOKJJ+IDH/hA2vj06dNj//79WddFyzr0gsRrr702PvnJTzYZv/jii+OSSy6Jv/zlL7Fx48YCVEYx+6d/+qeIiFi7dm2T+2bPnh0DBgyIb3zjG7Fu3bqIiLjnnnti3bp1MXny5LjkkkvyWWqnII9kOjaX/v37x4MPPhi7du2Km2+++ejjli1bFgsWLIhLLrkkvvKVrxSkVsildevWxcqVK3O+35UrV8b69etzvt+OTh4AAHR25ucAkGz6V9A8fx8AAHR2+rsAACTJ4sWL480330wbe/TRR+OMM87Iep979+6N2traJuNbtmxp1X7OPPPMeOSRR9LG3njjjViyZEnWtdGyDr0g8UTKy8sjInw1PVk73u9Ojx49YvHixXH48OEYP358/OIXv4ja2tr48Ic/HLNmzSpAlZ2HPJLpvblMmDAhxowZE0uXLo3vfe978de//jW+8IUvRJ8+feLRRx+NkpKSAlYKuXHsyWyx7LujkgcAABxhfg4AyaR/Bc3z9wEAAEfo7wIAUGiHDx+O+++/P23syiuvjDFjxrRpv1VVVU3GqqurY9CgQa3e19VXXx1XXnll2tj9998fhw8fzro+TqxTLkj8/e9/H8uXL4+/+Zu/iXPPPbfQ5VBkFi1aFBERF1100XHv/8QnPhH//M//HBs3boxLL700IiKWLFkS3bt3z1uNnYk8kqm5XBYsWBCnnHJK3HLLLXHjjTfGH//4x3jwwQejf//+hSgTcm7VqlVFue+OSh4AAHR25ucAkGz6V9A8fx8AAHR2+rsAACTFM888E9u3b08bu/3229u0z1WrVsWePXuajK9evTrrfU6dOjXt9rZt2+I///M/s94fJ9bpvh6woaEh/u///b9RX18fs2fPjtLS0kKX1CqpVCr2799f6DLyrqGhoSDH3bZtW9x9990REVFXVxdr166NFStWRN++feO+++5r9nkzZ86M+fPnx4EDB2LSpElx4YUX5qniphoaGqKuri7n+ywEeTS/z0JqTS59+/aNhx9+OMaOHRvPPPNMjBkzJiZMmFCAqo9ojzzovBoaGmLDhg3ttv8NGzbEW2+95dudMyQPAOhc3nte7xy/8DprHubn2TM/ByI67+cHnZf+FTTP3wcAdC7mg8nSWfPQ382e/i4Q0Xk/PwCKRVvPd5988sm029XV1XHJJZdkvb9UKhUjR45sMj537tzo2rVr1vv91Kc+FUOHDo1169YdHfv+978f11xzTdb75ARSncjhw4dTN9xwQyoiUjU1NYUuJyv79u1LRUSn37785S+36+v86quvNnvs008/PbV169YTPn/mzJlHHz9gwIBUXV1du9b7Xl/+8pflcQx5tI+25HLBBRekIiK1efPmvNT6rkLkYbPZbDabzWaz2Wy2zrmZnzfP/Nxms9lsNpvNZrPZbDabzWazJXnT322e/q7NZrPZbDZb8W+tPd/t379/2vP/7d/+rU3nlNOnTz9uXbnwne98J22flZWVrXr+see7+ZobFKMu0Uk0NjbGxIkT47vf/W587nOfi4ceeqjQJVEErrjiikilUpFKpWL37t1x3333xe7du2PMmDGxb9++4z5n7dq1ce+998aHP/zhuP3222Pbtm0xffr0PFfeMckjmbLJpXv37mn/BAAAANrG/BwAAAAAoDjp7wIAkFR//vOfY+fOnWljF110Udb727t3b9TW1jYZ37JlS9b7fK9ja9uxY0fs2rUrJ/smXVmhC8iHxsbGmDBhQjz22GNx/fXXx+LFi6NLl+Jci9mjR49mJ5gd2W233RYLFy4saA2nnnpq3H777fHWW2/FN77xjbjrrrviwQcfTHtMfX19jB8/PlKpVCxZsiTOP//8eO6552LevHkxduzYGDVqVN7rrqmpiQceeCCn+5RH9jpqHu/KJJckaY886LwaGhqib9++cfDgwXbZf0VFRezatSvKyjrF6VubyQMAOpe6urro27dvRETs2rUrevbsWeCKOrfOmof5efbMz4GIzvv5QeelfwXN8/cBAJ2L+WCydNY89Hezp78LRHTezw+AYtGW891f/vKXabd79+4dH/nIR7KupaqqqslYdXV1DBo0KOt9vtc555wTvXr1Slt39ctf/jLGjBmTk/3zvzp8h/29ixH/4R/+IR5//PEoLS0tdFlZKykp6ZQnaeXl5YUu4ag777wzHnnkkfjOd74Tt956a1RWVh6976677orNmzfH9OnT48ILL4yIiCVLlsQFF1wQEydOjA0bNkSPHj3yWm95eXnOf2fkkb2Onse7TpRLkrRHHnRu5513XqxZs6bd9n3SSSe1y747KnkAQOfUs2dP5/kJ0pnyMD/Pnvk5cKzO9PlB56Z/Bc3z9wEAnZP5YLJ0pjz0d7OnvwscqzN9fgAUi7ac765fvz7t9vDhw7Nek7Vq1arYs2dPk/HVq1dntb/jKS0tjeHDh8eKFSuOjq1bt86CxHZQnF8TmKHGxsaYOHFiPPbYYzFu3Lh44okninoxIsnQvXv3mDZtWjQ0NMTXv/71o+MvvfRS3H///XHuuefG3XfffXR86NChMWPGjNi+fXtMmzatABV3bPJIpuZygY5uxIgRRbnvjkoeAAB0dubnAJBs+lfQPH8fAAB0dvq7AAAkwd69e9Nu9+vXL6v9pFKpGDlyZJPxuXPnRteuXbPaZ3OOrfG935ZI7nToBYn33HNPLFmyJHr16hVnn312fOMb34i77747bVu3bl2hy6QI3XTTTfG3f/u38dhjj8X27dujrq4ubrzxxigtLY0lS5Y0eUOcMWNGVFdXx/z58+OFF14oUNUdlzyS6dhcoDOYOHFiUe67o5IHAACYnwNAkulfQfP8fQDA/8fe/YdZWdf543/NMMPwUyt/4LXKMjlgZAhMYQYJUeuPzF38qB+8+vXRcMPNBNLgEgiXNWsDylQWaVVcRW23z0pWbtulKNeasAa14sWPgHYBhdJvi6ibwKDDwJzvH3yiDjPDnDmcOed9Zh6P67qvOO85575fc54z932/X+O7A6C/CwBA6Y0YMSI++clPxmWXXRYXXXRRnHPOOXntZ86cOa2OT5s27XjKa9Xw4cPjoosuissuuyw++clPxogRIwp+DCKqSl1AZ9qxY0dEHF7N+rd/+7etPqe2tjZGjhxZvKLoEnr16hWzZ8+OqVOnxle/+tXo379/bNu2Lb761a9GfX19i+dXVVXFQw89FKNGjYpJkybFxo0bfRx5AckjTUfn8vDDD5e6JOh0I0eOjLFjx8aqVasKut+xY8e6Gc6DPAAAwPwcAFKmfwVt8/sBAAD6uwAAlN5nP/vZ+OxnP3tc+9i7d2/MmzevxfiWLVuOa79tmT59ekyfPr1T9s0fdOkFiUuXLo2lS5eWugzKUG1tbWQymWM+Z8qUKTFlypQjjxcvXnzM559zzjnR2NhYkPq6G3mkKZ9cfu+nP/1pJ1UFpXf33XfHqFGjoqmpqSD7q66ubvecRtvkAQBAV2d+DgDlTf8K2ub3AwCArk5/FwCA7qCurq7FWH19fQwdOrQE1VAolaUuAACgKxk+fHjcdtttBdvfbbfdlvfHmyMPAAAAANKmfwVt8/sBAAAAAFDeVq9eHbt3724xvmbNmhJUQyFZkAgAUGAzZ86MG2644bj3M2XKlJg5c2YBKure5AEAAABAyvSvoG1+PwAAAAAAylMmk4kxY8a0GF+4cGH07NmzBBVRSBYkAgAUWEVFRSxatCjmzZsX1dXVHX59dXV1zJs3L/7u7/4uKioqOqHC7kUeAAAAAKRM/wra5vcDAAAAAKA8zZkzp9XxadOmFbkSOoMFiQAAnaCioiJmzZoVzz//fIwdOzbn140dOzbWrl0bs2bN8h9HFJA8AAAAAEiZ/hW0ze8HAAAAAEB52bt3b8ybN6/F+JYtW0pQDZ2hqtQFAAB0ZcOHD4+VK1fG+vXr44EHHojVq1fH+vXr48CBAxERUVNTE8OHD4/Ro0fHtddeGyNGjChxxV2bPAAAAABImf4VtM3vBwAAAABAeairq2sxVl9fH0OHDi1BNXQGCxIBAIpgxIgRsXDhwoiIOHjwYOzZsyciIk444YSoqnJLVmx/nMebb74Z73jHOyIiYteuXXHiiSeWsDIAAAAA0E+EY9HfBQAAAABI1+rVq2P37t0txtesWVOCaugs/loFAFBkVVVV8a53vavUZfD//PF/wOU/5gIAAAAgNfqJ0Db9XQAAAACAdGQymRgzZkyL8YULF0bPnj1LUBGdpbLUBQAAAAAAAAAAAAAAAABQvubMmdPq+LRp04pcCZ3NgkQAAAAAAAAAAAAAAAAA8rJ3796YN29ei/EtW7aUoBo6mwWJAAAAAAAAAAAAAAAAAOSlrq6uxVh9fX0MHTq0BNXQ2SxIpCw1NzeXuoRkleK9kUfb5JEW7w0AAADFYg7aNu8NAAAAAJAyPcy2eW8AAMpfZ9zT/epXv4rdu3e3GF+zZk3Bj9WZ3O/mzoJEykJNTU3W4wMHDpSokvQ1NjZmPe7Vq1fBjyGP3MkjLcXIAwAAgO7J/Dx35ucAAAAAQEr0d3OnvwsAUH46+343k8nEjTfe2GJ84cKF0bNnz4Ieq7O5382dBYmUhaN/iffv31+iStJ39HvTGSdAeeROHmkpRh4AAAB0T+bnuTM/BwAAAABSor+bO/1dAIDy09n3u6+++mr853/+Z9bYO9/5zpg2bVpBj1MM7ndzZ0EiZeHkk0/Oevyb3/ymRJWk7+WXX856fNJJJxX8GPLInTzSUow8AAAA6J7Mz3Nnfg4AAAAApER/N3f6uwAA5aez73cHDBgQmzdvjrlz50ZNTU307ds3NmzYUNBjFIv73dxZkEhZGDx4cNbjbdu2laiS9G3dujXr8ZAhQwp+DHnkTh5pKUYeAAAAdE/m57kzPwcAAAAAUqK/mzv9XQCA8lOM+93evXvHV7/61di0aVM8/PDDccYZZxT8GMXgfjd3FiRSFo7+Jd61a1fs2bOnRNWka8+ePfHqq69mjXXGCVAeuZFHWoqVBwAAAN2T+XluzM8BAAAAgNTo7+ZGfxcAoDwV8363rq4urrjiik7Zd2dzv9sxFiRSFs4888yoqKjIGjt65TEt35PKysp497vfXfDjyCM38khLsfIAAACgezI/z435OQAAAACQGv3d3OjvAgCUJ/e7uXG/2zEWJFIWampqYtCgQVljK1asKFE16Xr66aezHg8aNChqamoKfhx55EYeaSlWHgAAAHRP5ue5MT8HAAAAAFKjv5sb/V0AgPLkfjc37nc7xoJEysbFF1+c9XjZsmUlqiRdR78nR79nhSSP9skjLcXMAwAAgO7J/Lx95ucAAAAAQIr0d9unvwsAUL7c77bP/W7HWJBI2Zg4cWLW47Vr18aLL75YomrSs3379njhhReyxo5+zwpJHscmj7QUOw8AAAC6J/PzYzM/BwAAAABSpb97bPq7AADlzf3usbnf7TgLEikbH/nIR+KUU07JGlu0aFGJqknP3XffnfX41FNPjXHjxnXa8eRxbPJIS7HzAAAAoHsyPz8283MAAAAAIFX6u8emvwsAUN7c7x6b+92OsyCRslFVVRVXXnll1tiiRYvil7/8ZYkqSsfGjRtbXAyuuOKKqKqq6rRjyqNt8khLKfIAAACgezI/b5v5OQAAAACQMv3dtunvAgCUP/e7bXO/mx8LEikrM2bMiJqamiOPDx06FDfccEM0NzeXsKrSam5ujhtuuCEOHTp0ZKympiZmzJjR6ceWR0vySEsp8wAAAKB7Mj9vyfwcAAAAACgH+rst6e8CAHQd7ndbcr+bPwsSKSt1dXVx8803Z42tXLkyvvCFL3TLk2Bzc3N84QtfiFWrVmWNz5w5M+rq6jr9+PLIJo+0lDoPAAAAuifz82zm5wAAAABAudDfzaa/CwDQtbjfzeZ+9/hUZDKZTKmLgI7Yv39/nH322bFz586s8cmTJ8c999wTlZXdY53t709+S5YsyRqvra2NzZs3R+/evYtShzwOk0daUskDKA8NDQ3Rr1+/iIjYt29f9O3bt8QVAQAd5XqeFnmYn/+e+TnQEa4fAOTD9QMAyp/reVrkob/7e/q7QEe4fgCUD/e7h7nfPX7d4yeFLqVPnz5x3333RVVVVdb4kiVLYvz48bFx48YSVVY8GzdujPHjx7c4+VVVVcW9995b1JOfPOSRmpTyAAAAoHsyPzc/BwAAAADKk/6u/i4AQFfmftf9bqFYkEhZuuiii+LRRx9tcRJctWpV1NfXx0033RTbt28vUXWdZ/v27XHTTTdFfX19i4+FraqqikcffTQuuuiiotclD3mkINU8AAAA6J7Mz83PAQAAAIDypL+rvwsA0JW533W/WwgVmUwmU+oiIF8//OEP46qrroqDBw+2+vX3v//9MXHixLjwwgtjyJAhccIJJxS5wuOzZ8+e2Lp1azz99NOxbNmyeOGFF1p93u9PfpdffnmRK8wmj8PkURzllgeQroaGhujXr19EROzbty/69u1b4ooAgI5yPU+LPLKZnx9mfg60x/UDgHy4fgBA+XM9T4s8sunvHqa/C7TH9QOgPLnfPcz9bn4sSKTsPfXUU/FXf/VXsWPHjnafe+qpp8aQIUPijDPOiD59+kRNTU1UVqbxQaHNzc3R2NgY+/fvj5dffjm2bt0ar776aruvq62tjXvvvTeZldjykEdn6Cp5AGnSEAOA8ud6nhZ5tGR+bn4OtM/1A4B8uH4AQPlzPU+LPFrS39XfBdrn+gFQvtzvut/NlwWJdAlvvfVWzJ8/PxYsWBCNjY2lLqcoampqYubMmTFr1qzo3bt3qcvJIg95lFrKeQDp0RADgPLnep4WebTO/Nz8HDg21w8A8uH6AQDlz/U8LfJonf6u/i5wbK4fAOXN/a773XxYkEiXsn379rj99tvjsccei927d5e6nE5x6qmnxhVXXBEzZsyIurq6UpdzTPJIizwAWqchBgDlz/U8LfI4NvNzgNa5fgCQD9cPACh/rudpkcex6e8CtM71A6BrcL9LR1iQSJd08ODBWLlyZSxbtiyWL18eO3bsiHL9Ua+oqIja2tq4+OKLY+LEiTFu3LioqqoqdVkdIo+0yAMgm4YYAJQ/1/O0yCM35ucA2Vw/AMiH6wcAlD/X87TIIzf6uwDZXD8Auhb3u+TCgkS6hcbGxnjppZdi69atsXXr1nj99dfj7bffjrfffrvUpWXp1atX9OrVK0466aQYMmRIDBkyJN797ndHTU1NqUsrKHmkRR5Ad6chBgDlz/U8LfLIT2fNz5uammLJkiURETF58uSorq4+rv2ZnwOdxfUDgHy4fgBA+XM9T4s88qO/C3R3rh8AXZv1BrTGgkQAALo1DTEAKH+u52mRR1rkAZQL5ysA8uH6AQDlz/U8LfJIizyAcuF8BQDdT2WpCwAAAAAAAAAAAAAAAAAA0mdBIgAAAAAAAAAAAAAAAADQLgsSAQAAAAAAAAAAAAAAAIB2WZAIAAAAAAAAAAAAAAAAALTLgkQAAAAAAAAAAAAAAAAAoF0WJAIAAAAAAAAAAAAAAAAA7bIgEQAAAAAAAAAAAAAAAABolwWJAAAAAAAAAAAAAAAAAEC7LEgEAAAAAAAAAAAAAAAAANplQSIAAAAAAAAAAAAAAAAA0C4LEgEAAAAAAAAAAAAAAACAdlmQCAAAAAAAAAAAAAAAAAC0y4JEAAAAAAAAAAAAAAAAAKBdFiQCAAAAAAAAAAAAAAAAAO2yIBEAAAAAAAAAAAAAAAAAaJcFiQAAAAAAAAAAAAAAAABAuyxIBAAAAAAAAAAAAAAAAADaZUEiAAAAAAAAAAAAAAAAANAuCxIBAAAAAAAAAAAAAAAAgHZVlboAKIbGxsZ48cUXY+vWrbFt27Z47bXX4u23347GxsZSl5alpqYmevXqFSeffHIMHjw4hgwZEmeeeWbU1NSUurSCkkda5AEAQFfmfjctnZVHU1PTkX/fdNNNUV1dfVz76y55AAAAAEDK9HfTor8LAADQPZmf0xoLEumSDh48GM8++2wsW7Ysli9fHjt37oxMJlPqsvJSUVERgwYNiosvvjgmTpwYH/nIR6Kqqrx+deWRFnkAANCVud9NSynyWLJkSafstyvkAQAAAAAp099Ni/4uAABA92R+Ti4qMuX6UwGt2LZtW3z729+Oxx57LHbv3l3qcjrFKaecEldeeWXMmDEj6urqSl3OMckjLfIAaF1DQ0P069cvIiL27dsXffv2LXFFAOTD/W5a5NG9ub9KizyAcuF8BUA+XD8Augb9xLTIo3tzf5UWeQDlwvkKoGswH6QjLEikS9i/f3/Mnz8/FixYEAcOHCh1OUVRU1MTN998c8yaNSv69OlT6nKyyEMepZZyHkB6NMQAypv73bTud+WRVh6l4v4qLfIAyoXzFQD5cP0AKG/6iWn1E+WRVh6l4v4qLfIAyoXzFUB5Mx80H8yHBYmUvaeeeiquu+662LlzZ7vPHTBgQAwePDgGDhwYffr0iZ49e0ZlZWURqmxfc3NzHDhwIPbv3x+/+c1vYtu2bbFr1652X1dbWxv33ntvXHTRRUWosn3ykEdn6Cp5AGnSEAMoX+5307rflUdaeZSS+6u0yAMoF85XAOTD9QOgfOknptVPlEdaeZSS+6u0yAMoF85XAOWrq80HN27cGL/97W+jqanJfLCTWZBIWfvhD38YV111VRw8eLDVr3/gAx+IiRMnxgUXXBBDhgyJE044ocgVHp89e/bE1q1bY8WKFfHoo4/GCy+80Orzqqqq4tFHH43LL7+8yBVmk8dh8iiOcssDSJeGGEB5cr97WCr3u/I4LJU8Ss39VVrkAZQL5ysA8uH6AVCe9BMPS6WfKI/DUsmj1NxfpUUeQLlwvgIoT11pPtjc3Bxf+cpXYsGCBfGDH/wgLr/8cvPBTmZBImWrrZNfjx49YurUqTF16tQ488wzS1Rd59i+fXvcfffdsWjRojh06FDW10p9EpSHPEot5TyAtGmIAZQf97tp3e/KI608UuD+Ki3yAMqF8xUA+XD9ACg/+olp9RPlkVYeKXB/lRZ5AOXC+Qqg/HSl+eBbb70VV199dXz/+9+PiIjf/va3cdppp7V4nvlgYVmQSFl66qmn4tJLL21x8hs3blwsXrw4hg0bVqLKiuOXv/xl3HDDDbFy5cqs8aqqqvjJT35S9I+LlYc8UpJaHkD6NMQAyov73bTud+WRVh6pcH+VFnkA5cL5CoB8uH4AlBf9xLT6ifJIK49UuL9KizyAcuF8BVBeutJ8cNeuXTFhwoT4xS9+ERERtbW18dJLLx3zNeaDhWFBImVn//79cfbZZ8fOnTuzxidPnhz33HNPVFZWlqiy4mpubo4vfOELsWTJkqzx2tra2Lx5c/Tu3bsodcjjMHmkJZU8gPKgIQZQPtzvHpbK/a48Dkslj5S4v0qLPIBy4XwFQD5cPwDKh37iYan0E+VxWCp5pMT9VVrkAZQL5yuA8tGV5oObNm2KSy+9NOt7+dSnPhX/9E//1O5rzQePX/n8pMD/M3/+/C5x8jtelZWVcc8998TkyZOzxnfs2BHz588vWh3yOEweaUklDwAACsv97mGp3O/K47BU8gAAAACAlOknHpZKP1Eeh6WSBwAAQLF0lfngihUrYsyYMS2+l9GjR+f0evPB4+cTEikr27Zti2HDhkVjY+ORsXHjxsUzzzxTVie/Qmpubo7x48fHqlWrjozV1NTEpk2boq6urlOPLY+W5JGWUuYBlA//D10A5cH9bkvmH2kx//gD91dpkQdQLpyvAMiH6wdAedBPbEl/Ny36u3/g/iot8gDKhfMVQHnoKvPB+++/P66//vo4ePBgi6/9x3/8R4waNSrnfZkP5q98fmIgIr797W9nnfx69OgRixcvLquTX6FVVlbG4sWLo0ePHkfGGhsb4/bbb+/0Y8ujJXmkpZR5AABQWO53WzL/SIv5BwAAAAC0Tj+xJf3dtOjvAgAA3UG5zwebm5tj5syZMXny5FYXI/bu3TtGjBjRoX2aD+avPH5qICIOHjwYjz32WNbY1KlTY9iwYSWqKB3nnHNOTJ06NWvsBz/4Qasn2UKRR9vkkZZS5AEAQGG5322b+UdazD8AAAAAIJt+Ytv0d9OivwsAAHRl5T4ffOutt+Kqq66Kb37zm20+Z9SoUVFdXd3hfZsP5seCRMrGs88+G7t3784aO/qXvjubMmVK1uNXX301Vq5c2WnHk8exySMtxc4DAIDCcr97bOYfaTH/AAAAAIA/0E88Nv3dtOjvAgAAXVU5zwd37doV48ePb7Gg8mijR4/O+xjmgx1nQSJlY9myZVmPP/CBD8SZZ55ZomrSU1dXF+9///uzxo5+zwpJHscmj7QUOw8AAArL/e6xmX+kxfwDAAAAAP5AP/HY9HfTor8LAAB0VeU6H9y0aVOcd9558Ytf/CJrvLKy5XK441mQaD7YcRYkUjaWL1+e9XjixIklqiRdR78nR79nhSSP9skjLcXMAwCAwnK/2z7zj7SYfwAAAADAYfqJ7dPfTYv+LgAA0BWV43zw6aefjjFjxsTOnTuzxk888cS4/fbbWzz/Qx/60HEdz3ywYyxIpCw0Nja2OIlccMEFJaomXRdeeGHW4507d0ZjY2PBjyOP3MgjLcXKAwCAwnK/mxvzj7SYfwAAAACAfmKu9HfTor8LAAB0NeU4H1yyZElccsklsWfPnqzx2tra+NnPfhZ9+vRpMX7aaacd1zHNBzvGgkTKwosvvhiZTCZr7KyzzipRNekaMmRI1uPm5uZ46aWXCn4ceeRGHmkpVh4AABSW+93cmH+kxfwDAAAAAPQTc6W/mxb9XQAAoKspp/lgc3NzzJw5M6677ro4dOhQ1tfOO++8WLNmTZx99tmxevXqrK+NHj36uI9tPtgxFiRSFrZu3Zr1eMCAAdG/f/8SVZOuE044IU499dSssaPfu0KQR27kkZZi5QEAQGG5382N+UdazD8AAAAAQD8xV/q7adHfBQAAuppymQ/u378/rrrqqvjmN7/Z6tcfeeSRGDBgQEREpyxINB/sGAsSKQvbtm3Lejx48OASVZK+o1dld8YJUB65k0daipEHAACF5X43d+YfaTH/AAAAAKC700/Mnf5uWvR3AQCArqRc5oNvvPFGvPXWW21+/ayzzopLLrkkXnvttfiv//qvrK8VYkFihPlgR1iQSFl47bXXsh4PHDiwRJWk74wzzsh6/Prrrxf8GPLInTzSUow8AAAoLPe7uTP/SIv5BwAAAADdnX5i7vR306K/CwAAdCXlMh8844wz4l//9V/j8ccfj9ra2laf8+STT8Ypp5ySNda7d+8YMWJEwWr4Y+aDbbMgkbLw9ttvZz3u06dPiSpJ39HvzdHvXSHII3fySEsx8gAAoLDc7+bO/CMt5h8AAAAAdHf6ibnT302L/i4AANCVpDwfPHToUBw6dOjI44qKipgwYUJs3rw55s6dm9M+Ro0aFdXV1QWpx3wwd1WlLgBy0djYmPW4Z8+eJaokfTU1NVmPO+MEKI/cySMtxcgDAIDCcr+bO/OPtJh/AAAAANDd6SfmTn83Lfq7AABAV1Lq+eCBAwdi/fr1WdumTZti79690dTUFBER1dXV0b9//3jf+94XI0aMiBEjRsSf/umf5rT/0aNHF6xW88HcWZBIWaqs9OGebSnFeyOPtskjLd4bAIDy556ubeYfafHeAAAAAEA2PbO26e+mxXsDAAB0ZcWa86xbty4eeOCB+Md//Md44403jvncpqameOONN2LVqlWxatWqDh2nkAsSzQdzZ0EiAAAAAAAAAAAAAAAAAHk7ePBg/MM//EPcc889sW7duoLv/9JLL40VK1Zkferjhz70oYIfh/ZZkAgAAAAAAAAAAAAAAABAXlavXh3XX399rF+/vtOO8ZOf/CSGDh0a73znO2P16tVRW1sbp512Wqcdj7ZZkAgAAAAAAAAAAAAAAABAh7z++usxa9asuP/++4/5vLPOOitGjBhxZDv99NOjpqYmIiIaGxvjlVdeifXr18fXvva1rE9APNqvfvWriIi48MILY9iwYYX7RugQCxIBAAAAAACAI5qammLv3r0REdG/f/+orq4ucUUAAAAAAORCfxcopnXr1sWf//mfxyuvvNLq1wcOHBif+9zn4pprrom6urpj7qu+vj5OOumkuOWWW3I69tNPPx2bN2+Oq6++OkaOHNnR0jlOlaUuAAAAAAAAACitdevWxbRp0+Lcc8+Nfv36xUknnRQnnXRS9OvXL84999yYNm1arF+/vtRlAgAAAABwFP1doBSefPLJOP/881tdjDhs2LB44okn4qWXXorbbrut3cWIERGZTCbGjBnTYvzOO++MJ554otVPQ3zllVfi/PPPjyeffDK/b4K8WZAIAAAAAAAA3dSGDRti3LhxUV9fH4sWLYrnn38+Dhw4cOTrBw4ciOeffz4WLVoUI0eOjHHjxsWGDRtKWDEAAAAAABH6u0Dp/PjHP44JEyZEQ0ND1njfvn3j9ttvjxdeeCE+/vGPR48ePXLe55w5c1odv/HGG+PjH/94vPDCC3H77bdH3759s77e0NAQl112Wfz4xz/u+DdC3ixIBAAAAAAAgG4mk8nE/PnzY9SoUbFq1aqcX7dq1aoYNWpUzJ8/PzKZTCdWCAAAAABAa/R3gVJ67rnn4sorr4ympqas8bFjx8aWLVti+vTpUV1d3aF97t27N+bNm9difMuWLUf+XV1dHdOnT48tW7bE+eefn/W8AwcOxJVXXhnPPfdch45L/ixIBAAAAAAAgG4kk8nE1KlTY/bs2S3+WJyLpqammD17dkydOtV/tAIAAAAAUET6u0Ap/c///E98+tOfbnH++dSnPhVPP/10DBw4MK/91tXVtRirr6+PoUOHthgfOHBgrFixIj71qU9ljTc1NcWnP/3p+N3vfpdXDXRMl16Q+Pbbb8eXv/zlGDduXPzJn/xJ9OrVK0477bT48Ic/HA8++GBeF2C6hx07dkRFRUXWVl1dHaeffnpcddVV8fzzz2c9f+/evVFbWxu9evWKzZs3t7rPBQsWREVFRXz+858vxrfQpcgjTbnmctddd0VFRUVMmjSpzX399Kc/jcrKyjj33HPj4MGDxfoWAACgTe530yIPAIDCWrBgQSxevPi497N48eJYsGBBASoCAIDC0U9MizwAAApLfxcolUwmE5MnT45f//rXWePXXnttPPLII1FTU5PXflevXh27d+9uMb5mzZo2X1NTUxOPPPJIXHvttVnjv/71r2Py5MkWXBdBVakL6Ez79u2Lv//7v48PfvCDcemll8Ypp5wS//M//xNPPPFEXHvttfF//+//jSeeeCIqK7v0ukyOQ11dXXz2s5+NiIiGhoZYu3ZtLFu2LH70ox/FihUrYty4cRER0b9//3jggQfiggsuiGuuuSZWr14dVVV/+PXauHFjzJ07NwYNGhR33nlnSb6XrkAeaWovly996Uvx+OOPx9KlS+OKK66Iv/iLv8h6/b59+2LSpElRU1MTDz/8cFZWAABQau530yIPAIDjt2HDhpg7d27B9jd37tz4xCc+EcOHDy/YPgEAoBD0E9MiDwCA46e/C5TSkiVL4rHHHssaGz9+fNx3333Ro0ePvPaZyWRizJgxLcYXLlwYPXv2POZre/ToEffdd19s3749nn322SPj3//+9+P++++PyZMn51UTuenSs/J3vetd8eabb7b4ITx48GBceOGF8dRTT8UTTzwRl156aYkqJHWDBw+OW2+9NWts/vz5MXv27Pjrv/7rrJPWxz72sbjhhhvi7rvvjm984xtHbvaampri6quvjqampnjwwQejf//+xfwWuhR5pCmXXJYuXRrDhw+PyZMnx6ZNm+Kkk0468tzp06fHjh074s4774z3vve9Ra4eAACOzf1uWuQBAHD8pkyZEk1NTQXbX1NTU0yZMiVWrlxZsH0CAEAh6CemRR4AAMdPfxcolf3798fs2bOzxt71rnfFd7/73bwXI0ZEzJkzp9XxadOm5fT6Hj16xHe/+90YMWJEvPHGG0fGZ8+eHZ/5zGeiT58+edfGsXXpjwasrKxsdUVsVVVVXH755RERsW3btmKXRZn7y7/8y4iIWLt2bYuvLViwIAYPHhxf//rXY926dRERcdttt8W6deti6tSp8dGPfrSYpXYL8kjT0bkMGjQo7rrrrti1a1dcf/31R563fPnyuO++++KjH/1ofOlLXypJrQAA0FHud9MiDwCA3K1bty5WrVpV8P2uWrUq1q9fX/D9AgBAoeknpkUeAAC5098FSmnp0qVZC/4iIh588ME4/fTT897n3r17Y968eS3Gt2zZ0qH9nHHGGfHAAw9kjb3++uvx0EMP5V0b7evSCxLb0tzcHE8++WRERAwbNqzE1VCuqqpafsBonz59YunSpXHo0KG4+uqr49///d9j3rx58Z73vCfmz59fgiq7D3mk6Y9zmTRpUkyYMCGWLVsW3/ve9+J3v/tdfP7zn48TTjghHnzwwaioqChhpQAA0HHud9MiDwCA9h39x9hy2TcAABSafmJa5AEA0D79XaBUDh06FHfccUfW2CWXXBITJkw4rv3W1dW1GKuvr4+hQ4d2eF+XXXZZXHLJJVljd9xxRxw6dCjv+ji2brEg8cCBA3HrrbfG3/zN38SUKVPife97XzzxxBMxadKk+LM/+7NSl0eZuf/++yMi4vzzz2/16x/+8Ifjy1/+cmzcuDEuuOCCiIh46KGHonfv3kWrsTuRR5rayuW+++6Lk08+OW644Yb43Oc+Fy+//HLcddddMWjQoFKUCQAAeXG/mxZ5AADkbvXq1WW5bwAAKBT9xLTIAwAgd/q7QKk8/vjjsX379qyxGTNmHNc+V69eHbt3724xvmbNmrz3OX369KzH27Zti3/5l3/Je38cW8uPFOuCDhw4EF/96lePPK6oqIgZM2a0+tGeqctkMrF///5Sl1F0TU1NJTnutm3b4tZbb42IiIaGhli7dm0888wzMWDAgPjWt77V5uvmzp0bixcvjrfeeiumTJkS5513XpEqbqmpqSkaGhoKvs9SkEfb+yyljuQyYMCAuPfee+PKK6+Mxx9/PCZMmBCTJk0qQdWHdUYeQPn54/OAcwJAetzv5s/8o+vnkSr3V2mRB1AunK86X1NTU2zYsKHT9r9hw4Z48803sz7ZBKCzuX4ApE0/MX/6u10/j1S5v0qLPIBy4XzV+fR3geNxvPPBRx99NOtxfX19fPSjH817f5lMJsaMGdNifOHChdGzZ8+89/uxj30sRo4cGevWrTsy9s///M9x+eWX571PjiHTjRw6dCjzm9/8JvOd73wn8453vCPz4Q9/OPPmm2+WuqwO2bdvXyYiuv32xS9+sVPf55deeqnNY5922mmZrVu3HvP1c+fOPfL8wYMHZxoaGjq13j/2xS9+UR5HkUfnOJ5cPvjBD2YiIrN58+ai1Pp7pcjDZrPZbDabzVbYzf1u28w/Wted8rDZbDabzWaz2Ww2m81ms9lS3vQT26a/27rulIfNZrPZbDabzWazFWvr6Hxw0KBBWa//+7//++Oac82ePbvVugrhO9/5TtY+a2trO/T6o+eDxZo7l6PK6EYqKyvjjDPOiOuvvz7uu+++eO655+Jv//ZvS10WCbv44osjk8lEJpOJV199Nb71rW/Fq6++GhMmTIh9+/a1+pq1a9fGN77xjXjPe94TM2bMiG3btsXs2bOLXHnXJI805ZNL7969s/4XAABS5X43LfIAAAAAAHKln5gWeQAAAJSf//7v/46dO3dmjZ1//vl572/v3r0xb968FuNbtmzJe59/7OjaduzYEbt27SrIvsnWbT9T96KLLoqIiJ/+9KelLaSD+vTp02YDpiu76aabYsmSJSWt4ZRTTokZM2bEm2++GV//+tfjlltuibvuuivrOY2NjXH11VdHJpOJhx56KN7//vfHU089FYsWLYorr7wyxo0bV/S6J0+eHHfeeWdB9ymP/HXVPH4vl1xS0hl5AOWnoaEhBgwYEBERu3btir59+5a4IgD+mPvd/Jl/pKU7zT/cX6VFHkC5cL7qfE1NTTFgwIA4cOBAp+y/pqYmdu3aFVVV3fbPj0AJuH4ApE0/MX/6u2nR36VU5AGUC+erzqe/CxyP45kP/vznP8963L9//3jve9+bdy11dXUtxurr62Po0KF57/OPnX322dGvX7+sdVc///nPY8KECQXZP3/Qba8Y/9//9/9FRER1dXWJK+mYioqKbnmTllJOX/nKV+KBBx6I73znO3HjjTdGbW3tka/dcsstsXnz5pg9e3acd955ERHx0EMPxQc/+MG49tprY8OGDdGnT5+i1ltdXV3wnxl55K+r5/F7x8olJZ2RB1De+vbt67wAkBj3u/kz/0hLd51/uL9KizyAcuF81XmGDx8ezz//fKft+8QTT+yUfQPkwvUDID36ifnT302L/i4pkAdQLpyvOo/+LpCv45kPrl+/PuvxueeeGz169MhrX6tXr47du3e3GF+zZk1e+2tNjx494txzz41nnnnmyNi6dessSOwElaUuoDNt3rw59u/f32J8//798eUvfzkiIj7xiU8UuyzKXO/evWPmzJnR1NQUX/va146MP/fcc3HHHXfEOeecE7feeuuR8ZEjR8acOXNi+/btMXPmzBJU3LXJI01t5QIAAF2B+920yAMAIHejR48uy30DAECh6CemRR4AALnT3wVKYe/evVmPBw4cmNd+MplMjBkzpsX4woULo2fPnnntsy1H1/jHn5ZI4XTpBYmPPvponHbaafGJT3wivvjFL8asWbPi//yf/xN/+qd/Gk8++WSMHTs2brrpplKXSRm67rrr4k/+5E/i4Ycfju3bt0dDQ0N87nOfix49esRDDz3U4oQ4Z86cqK+vj8WLF8ezzz5boqq7Lnmk6ehcAACgK3G/mxZ5AADk5tprry3LfQMAQCHpJ6ZFHgAAudHfBUphxIgR8clPfjIuu+yyuOiii+Kcc87Jaz9z5sxpdXzatGnHU16rhg8fHhdddFFcdtll8clPfjJGjBhR8GPQxRck/vmf/3l88pOfjF//+tfxve99L7797W/HE088EcOHD4977703/u3f/i169+5d6jIpQ7169YrZs2fHwYMH46tf/WrcfPPNsW3btrjllluivr6+xfOrqqrioYceiurq6pg0aVI0NDSUoOquSx5pOjoXAADoStzvpkUeAAC5GTlyZIwdO7bg+x07dqw/5gIAUDb0E9MiDwCA3OjvAqXw2c9+Nr73ve/Fj370o1i+fHlMnz69w/vYu3dvzJs3r8X4li1bClFiC9OnT4/ly5fHj370o/je974Xn/nMZzrlON1dVakL6EyjRo2KUaNGlboMylBtbW1kMpljPmfKlCkxZcqUI48XL158zOefc8450djYWJD6uht5pCmfXH7vpz/9aSdVBQAAheF+Ny3yAAAonLvvvjtGjRoVTU1NBdlfdXV1uz15AAAoJv3EtMgDAKBw9HeBclRXV9dirL6+PoYOHVqCaiiULv0JiQAAAAAAAMAfDB8+PG677baC7e+2226Lc845p2D7AwAAAACgdfq7QLlZvXp17N69u8X4mjVrSlANhWRBIgAAAAAAAHQjM2fOjBtuuOG49zNlypSYOXNmASoCAAAAACAX+rtAuchkMjFmzJgW4wsXLoyePXuWoCIKyYJEAAAAAAAA6EYqKipi0aJFMW/evKiuru7w66urq2PevHnxd3/3d1FRUdEJFQIAAAAA0Br9XaBczJkzp9XxadOmFbkSOoMFiQAAAAAAANDNVFRUxKxZs+L555+PsWPH5vy6sWPHxtq1a2PWrFn+YxUAAAAAgBLQ3wVSt3fv3pg3b16L8S1btpSgGjpDVakLAAAAAAAAAEpj+PDhsXLlyli/fn088MADsXr16li/fn0cOHAgIiJqampi+PDhMXr06Lj22mtjxIgRJa4YAAAAAIAI/V0gXXV1dS3G6uvrY+jQoSWohs5gQSIAAAAAAAB0cyNGjIiFCxdGRMSbb74Z73jHOyIiYteuXXHiiSeWsDIAAAAAAI5FfxdIyerVq2P37t0txtesWVOCaugslaUuAAAAAAAAAEhHVVVVq/8GAAAAACBt+rtAKWUymRgzZkyL8YULF0bPnj1LUBGdxYJEAAAAAAAAAAAAAAAAAPI2Z86cVsenTZtW5ErobBYkAgAAAAAAAAAAAAAAAJCXvXv3xrx581qMb9mypQTV0NksSAQAAAAAAAAAAAAAAAAgL3V1dS3G6uvrY+jQoSWohs5mQSJlqbm5udQlJKsU74082iaPtHhvAADKn3u6tpl/pMV7AwAAAADZ9Mzapr+bFu8NAADQlXXGnOdXv/pV7N69u8X4mjVrCn6szmQ+mDsLEikLNTU1WY8PHDhQokrS19jYmPW4V69eBT+GPHInj7QUIw8AAArL/W7uzD/SYv4BAAAAQHenn5g7/d206O8CAABdSWfPBzOZTNx4440txhcuXBg9e/Ys6LE6m/lg7ixIpCwc/Uu8f//+ElWSvqPfm844Acojd/JISzHyAACgsNzv5s78Iy3mHwAAAAB0d/qJudPfTYv+LgAA0JV09nzw1Vdfjf/8z//MGnvnO98Z06ZNK+hxisF8MHcWJFIWTj755KzHv/nNb0pUSfpefvnlrMcnnXRSwY8hj9zJIy3FyAMAgMJyv5s784+0mH8AAAAA0N3pJ+ZOfzct+rsAAEBX0tnzwQEDBsTmzZtj7ty5UVNTE3379o0NGzYU9BjFYj6YOwsSKQuDBw/Oerxt27YSVZK+rVu3Zj0eMmRIwY8hj9zJIy3FyAMAgMJyv5s784+0mH8AAAAA0N3pJ+ZOfzct+rsAAEBXUoz5YO/eveOrX/1qbNq0KR5++OE444wzCn6MYjAfzJ0FiZSFo3+Jd+3aFXv27ClRNenas2dPvPrqq1ljnXEClEdu5JGWYuUBAEBhud/NjflHWsw/AAAAAEA/MVf6u2nR3wUAALqaYs4H6+rq4oorruiUfXc288GOsSCRsnDmmWdGRUVF1tjRK49p+Z5UVlbGu9/97oIfRx65kUdaipUHAACF5X43N+YfaTH/AAAAAAD9xFzp76ZFfxcAAOhqzAdzYz7YMRYkUhZqampi0KBBWWMrVqwoUTXpevrpp7MeDxo0KGpqagp+HHnkRh5pKVYeAAAUlvvd3Jh/pMX8AwAAAAD0E3Olv5sW/V0AAKCrMR/Mjflgx1iQSNm4+OKLsx4vW7asRJWk6+j35Oj3rJDk0T55pKWYeQAAUFjud9tn/pEW8w8AAAAAOEw/sX36u2nR3wUAALoi88H2mQ92jAWJlI2JEydmPV67dm28+OKLJaomPdu3b48XXngha+zo96yQ5HFs8khLsfMAAKCw3O8em/lHWsw/AAAAAOAP9BOPTX83Lfq7AABAV2U+eGzmgx1nQSJl4yMf+UiccsopWWOLFi0qUTXpufvuu7Men3rqqTFu3LhOO548jk0eaSl2HgAAFJb73WMz/0iL+QcAAAAA/IF+4rHp76ZFfxcAAOiqzAePzXyw4yxIpGxUVVXFlVdemTW2aNGi+OUvf1miitKxcePGFheDK664IqqqqjrtmPJomzzSUoo8AAAoLPe7bTP/SIv5BwAAAABk009sm/5uWvR3AQCArsx8sG3mg/mxIJGyMmPGjKipqTny+NChQ3HDDTdEc3NzCasqrebm5rjhhhvi0KFDR8ZqampixowZnX5sebQkj7SUMg8AAArL/W5L5h9pMf8AAAAAgNbpJ7akv5sW/V0AAKA7MB9syXwwfxYkUlbq6uri5ptvzhpbuXJlfOELX+iWJ8Hm5ub4whe+EKtWrcoanzlzZtTV1XX68eWRTR5pKXUeAAAUlvvdbKW+35VHtlLnAQAAAAAp00/MVup+ojyylToPAACAYjEfzGY+eHwqMplMptRFQEfs378/zj777Ni5c2fW+OTJk+Oee+6Jysrusc729ye/JUuWZI3X1tbG5s2bo3fv3kWpQx6HySMtqeQBlIeGhobo169fRETs27cv+vbtW+KKAGiL+93DUrnflcdhqeSREvdXaZEHUC6cr9IiD6BcOF8BlA/9xMNS6SfK47BU8kiJ+6u0yAMoF85XaZEHcCzmg4eZDx6/7vGTQpfSp0+fuO+++6KqqiprfMmSJTF+/PjYuHFjiSorno0bN8b48eNbnPyqqqri3nvvLerJTx7ySE1KeQAAUFjud9O635VHWnkAAAAAQMr0E9PqJ8ojrTwAAACKxXzQfLBQLEikLF100UXx6KOPtjgJrlq1Kurr6+Omm26K7du3l6i6zrN9+/a46aabor6+vsXHwlZVVcWjjz4aF110UdHrkoc8UpBqHgAAFJb73bTud+WRVh4AAAAAkDL9xLT6ifJIKw8AAIBiMR80HyyEikwmkyl1EZCvH/7wh3HVVVfFwYMHW/36+9///pg4cWJceOGFMWTIkDjhhBOKXOHx2bNnT2zdujWefvrpWLZsWbzwwgutPu/3J7/LL7+8yBVmk8dh8iiOcssDSFdDQ0P069cvIiL27dsXffv2LXFFAOTC/e5hqdzvyuOwVPIoNfdXaZEHUC6cr9IiD6BcOF8BlCf9xMNS6SfK47BU8ig191dpkQdQLpyv0iIPIFfmg4eZD+bHgkTK3lNPPRV/9Vd/FTt27Gj3uaeeemoMGTIkzjjjjOjTp0/U1NREZWUaHxTa3NwcjY2NsX///nj55Zdj69at8eqrr7b7utra2rj33nuTWYktD3l0hq6SB5AmDRiA8uV+N637XXmklUcpub9KizyAcuF8lRZ5AOXC+QqgfOknptVPlEdaeZSS+6u0yAMoF85XaZEH0BHmg+aD+bIgkS7hrbfeivnz58eCBQuisbGx1OUURU1NTcycOTNmzZoVvXv3LnU5WeQhj1JLOQ8gPRowAOXN/W5a97vySCuPUnF/lRZ5AOXC+Sot8gDKhfMVQHnTT0yrnyiPtPIoFfdXaZEHUC6cr9IiD6CjzAfNB/NhQSJdyvbt2+P222+Pxx57LHbv3l3qcjrFqaeeGldccUXMmDEj6urqSl3OMckjLfIAaJ0GDEDX4H43LfLo3txfpUUeQLlwvkqLPIBy4XwF0DXoJ6ZFHt2b+6u0yAMoF85XaZEHkC/zQTrCgkS6pIMHD8bKlStj2bJlsXz58tixY0eU6496RUVF1NbWxsUXXxwTJ06McePGRVVVVanL6hB5pEUeANk0YAC6Fve7aZFH9+T+Ki3yAMqF81Va5AGUC+crgK5FPzEt8uie3F+lRR5AuXC+Sos8gONlPkguLEikW2hsbIyXXnoptm7dGlu3bo3XX3893n777Xj77bdLXVqWXr16Ra9eveKkk06KIUOGxJAhQ+Ld73531NTUlLq0gpJHWuQBdHcaMABdW2fd7zY1NcWSJUsiImLy5MlRXV19XPvrLve75h/dg/urtMgDKBfOV2mRB1AunK8Aujb93bTo73YP7q/SIg+gXDhfpUUeQKGZD9IaCxIBAOjWNGAAyIfrB7TN70da5AGUC+ertMgDKBfOVwDkw/UD2ub3Iy3yAMqF81Va5AFAMVSWugAAAAAAAAAAAAAAAAAAIH0WJAIAAAAAAAAAAAAAAAAA7bIgEQAAAAAAAAAAAAAAAABolwWJAAAAAAAAAAAAAAAAAEC7LEgEAAAAAAAAAAAAAAAAANplQSIAAAAAAAAAAAAAAAAA0C4LEgEAAAAAAAAAAAAAAACAdlmQCAAAAAAAAAAAAAAAAAC0y4JEAAAAAAAAAAAAAAAAAKBdFiQCAAAAAAAAAAAAAAAAAO2yIBEAAAAAAAAAAAAAAAAAaJcFiQAAAAAAAAAAAAAAAABAuyxIBAAAAAAAAAAAAAAAAADaZUEiAAAAAAAAAAAAAAAAANAuCxIBAAAAAAAAAAAAAAAAgHZZkAgAAAAAAAAAAAAAAAAAtMuCRAAAAAAAAAAAAAAAAACgXRYkAgAAAAAAAAAAAAAAAADtsiARAAAAAAAAAAAAAAAAAGhXVakLgGJobGyMF198MbZu3Rrbtm2L1157Ld5+++1obGwsdWlZampqolevXnHyySfH4MGDY8iQIXHmmWdGTU1NqUsrKHmkRR4AAAAAQK46q5/Y1NR05N833XRTVFdXH9f+uks/UR5p0W9PizwAAAAAsuknpkUeadFPTIs80iIPWlORyWQypS4CCu3gwYPx7LPPxrJly2L58uWxc+fOKNcf9YqKihg0aFBcfPHFMXHixPjIRz4SVVXltZZYHmmRB0C2hoaG6NevX0RE7Nu3L/r27VviigAoB64f0Da/H2mRB3C89BPTIo+0yCMt8uie3O8CkA/XD2ib34+0yAM4XvolaZFHWuSRFnmkRR7kwoJEupRt27bFt7/97Xjsscdi9+7dpS6nU5xyyilx5ZVXxowZM6Kurq7U5RyTPNIiD4DWaeADkA/XD2ib34+0yAPIl35iWuSRFnmkRR7dm/tdAPLh+gFt8/uRFnkA+dIvSYs80iKPtMgjLfKgIyxIpEvYv39/zJ8/PxYsWBAHDhwodTlFUVNTEzfffHPMmjUr+vTpU+pysshDHqWWch5AejTwAciH6we0ze9HWuQBdJR+Ylr9RHnIo9TkkZaU8ygV97sA5MP1A9rm9yMt8gA6Sr8krX6JPORRavJIizzSknIe5cKCRMreU089Fdddd13s3Lmz3ecOGDAgBg8eHAMHDow+ffpEz549o7KysghVtq+5uTkOHDgQ+/fvj9/85jexbdu22LVrV7uvq62tjXvvvTcuuuiiIlTZPnnIozN0lTyANGngA5AP1w9om9+PtMgD6Aj9xLT6ifKQR2eQhzy6Gve7AOTD9QPa5vcjLfIAOkK/JK1+iTzk0RnkIY/O0NXy2LhxY/z2t7+NpqamssyjnFiQSFn74Q9/GFdddVUcPHiw1a9/4AMfiIkTJ8YFF1wQQ4YMiRNOOKHIFR6fPXv2xNatW2PFihXx6KOPxgsvvNDq86qqquLRRx+Nyy+/vMgVZpPHYfIojnLLA0iXBj4A+XD9gLb5/UiLPIBc6Scelko/UR6HyaM45JGWcsuj1NzvApAP1w9om9+PtMgDyJV+yWGp9EvkcZg8ikMeaZFH6TQ3N8dXvvKVWLBgQfzgBz+Iyy+/vOzyKDsZKFM/+MEPMlVVVZmIyNp69OiRufHGGzPbt28vdYkFt23btsyNN96Y6dGjR4vvu6qqKvODH/ygZLXJQx6llnIeQNr27dt35Hyxb9++UpcDQJlw/YC2+f1IizyAXOgnptVPlIc8Sk0eaUk5jxS43wUgH64f0Da/H2mRB5AL/ZK0+iXykEepySMt8iiO/fv3Z/73//7fR76H3/72t60+L+U8ypEFiZSl5cuXt3ryGzduXGbjxo2lLq/Tbdy4MTNu3LhWT4LLly8vej3ykEdKUssDSJ8GPgD5cP2Atvn9SIs8gPboJ6bVT5SHPFIij7Sklkcq3O8CkA/XD2ib34+0yANoj35JWv0SecgjJfJIizw6z3//939nPvjBDx75Hmpra9t9TWp5lKuKTCaTCSgj+/fvj7PPPjt27tyZNT558uS45557orKyskSVFVdzc3N84QtfiCVLlmSN19bWxubNm6N3795FqUMeh8kjLankAZSHhoaG6NevX0RE7Nu3L/r27VviigAoB64f0Da/H2mRB3As+omHpdJPlMdh8kiLPNKSSh4pcb8LQD5cP6Btfj/SIg/gWPRLDkulXyKPw+SRFnmkRR6Ft2nTprj00kuzvpdPfepT8U//9E/tvjaVPMpZ+fykwP8zf/78LnHyO16VlZVxzz33xOTJk7PGd+zYEfPnzy9aHfI4TB5pSSUPAAAAAEiZfuJhqfQT5XGYPNIij7SkkgcAAABQevolh6XSL5HHYfJIizzSIo/CWrFiRYwZM6bF9zJ69OicXp9KHuXMJyRSVrZt2xbDhg2LxsbGI2Pjxo2LZ555pqxOfoXU3Nwc48ePj1WrVh0Zq6mpiU2bNkVdXV2nHlseLckjLaXMAygf/h8FAciH6we0ze9HWuQBtEU/sSX93bTIIy3ySIu/f/yB+10A8uH6AW3z+5EWeQBt0S9pSf8qLfJIizzSIo/jd//998f1118fBw8ebPG1//iP/4hRo0blvC/99vyVz08MRMS3v/3trJNfjx49YvHixWV18iu0ysrKWLx4cfTo0ePIWGNjY9x+++2dfmx5tCSPtJQyDwAAAABImX5iS/q7aZFHWuSRFn//AAAAgO5Nv6Ql/au0yCMt8kiLPPLX3NwcM2fOjMmTJ7e6GLF3794xYsSIDu1Tvz1/5fFTAxFx8ODBeOyxx7LGpk6dGsOGDStRRek455xzYurUqVljP/jBD1o9yRaKPNomj7SUIg8AAAAASJl+Ytv0d9Mij7TIIy3+/gEAAADdk35J2/Sv0iKPtMgjLfLouLfeeiuuuuqq+OY3v9nmc0aNGhXV1dUd3rd+e34sSKRsPPvss7F79+6ssaN/6buzKVOmZD1+9dVXY+XKlZ12PHkcmzzSUuw8AAAAACBl+onHpr+bFnmkRR5p8fcPAAAA6H70S45N/yot8kiLPNIij9zt2rUrxo8f32JB5dFGjx6d9zH02zvOgkTKxrJly7Ief+ADH4gzzzyzRNWkp66uLt7//vdnjR39nhWSPI5NHmkpdh4AAAAAkDL9xGPT302LPNIij7T4+wcAAAB0P/olx6Z/lRZ5pEUeaZFHbjZt2hTnnXde/OIXv8gar6xsuRzueBYk6rd3nAWJlI3ly5dnPZ44cWKJKknX0e/J0e9ZIcmjffJISzHzAAAAAICU6Se2T383LfJIizzS4u8fAAAA0L3ol7RP/yot8kiLPNIij2N7+umnY8yYMbFz586s8RNPPDFuv/32Fs//0Ic+dFzH02/vGAsSKQuNjY0tTiIXXHBBiapJ14UXXpj1eOfOndHY2Fjw48gjN/JIS7HyAAAAAICU6SfmRn83LfJIizzS4u8fAAAA0H3ol+RG/yot8kiLPNIij7YtWbIkLrnkktizZ0/WeG1tbfzsZz+LPn36tBg/7bTTjuuY+u0dY0EiZeHFF1+MTCaTNXbWWWeVqJp0DRkyJOtxc3NzvPTSSwU/jjxyI4+0FCsPAAAAAEiZfmJu9HfTIo+0yCMt/v4BAAAA3Yd+SW70r9Iij7TIIy3yaKm5uTlmzpwZ1113XRw6dCjra+edd16sWbMmzj777Fi9enXW10aPHn3cx9Zv7xgLEikLW7duzXo8YMCA6N+/f4mqSdcJJ5wQp556atbY0e9dIcgjN/JIS7HyAAAAAICU6SfmRn83LfJIizzS4u8fAAAA0H3ol+RG/yot8kiLPNIij2z79++Pq666Kr75zW+2+vVHHnkkBgwYEBHRKQsS9ds7xoJEysK2bduyHg8ePLhElaTv6FXZnXEClEfu5JGWYuQBAAAAACnTT8yd/m5a5JEWeaTF3z8AAACge9AvyZ3+VVrkkRZ5pEUef/DGG2/EW2+91ebXzzrrrLjkkkvitddei//6r//K+lohFiRG6Ld3hAWJlIXXXnst6/HAgQNLVEn6zjjjjKzHr7/+esGPIY/cySMtxcgDAAAAAFKmn5g7/d20yCMt8kiLv38AAABA96Bfkjv9q7TIIy3ySIs8/uCMM86If/3Xf43HH388amtrW33Ok08+GaecckrWWO/evWPEiBEFq+GP6be3zYJEysLbb7+d9bhPnz4lqiR9R783R793hSCP3MkjLcXIAwAAAABSpp+YO/3dtMgjLfJIi79/AAAAQPegX5I7/au0yCMt8khLd8/j0KFDcejQoSOPKyoqYsKECbF58+aYO3duTvsYNWpUVFdXF6Qe/fbcVZW6AMhFY2Nj1uOePXuWqJL01dTUZD3ujBOgPHInj7QUIw8AAAAASJl+Yu70d9Mij7TIIy3+/gEAAADdg35J7vSv0iKPtMgjLd0hjwMHDsT69euztk2bNsXevXujqakpIiKqq6ujf//+8b73vS9GjBgRI0aMiD/90z/Naf+jR48uWK367bmzIJGyVFnpwz3bUor3Rh5tk0davDcAAAAAkE3PrG36u2mRR1rkkRbvDQAAAHRPegJt079KizzSIo+0dOU81q1bFw888ED84z/+Y7zxxhvHfG5TU1O88cYbsWrVqli1alWHjlPIBYl+VnNnQSIAAAAAAAAAAAAAAAAAeTt48GD8wz/8Q9xzzz2xbt26gu//0ksvjRUrVmR96uOHPvShgh+H9lmQCAAAAAAAAAAAAAAAAEBeVq9eHddff32sX7++047xk5/8JIYOHRrvfOc7Y/Xq1VFbWxunnXZapx2PtlmQCAAAAAAAAAAAAAAAAECHvP766zFr1qy4//77j/m8s846K0aMGHFkO/3006OmpiYiIhobG+OVV16J9evXx9e+9rWsT0A82q9+9auIiLjwwgtj2LBhhftG6BALEgEAAACAgmlqamr135SGPNLS1NQUe/fujYiI/v37R3V1dYkr6t7kAQAAAJBNPzEt8kiLfmJa5AEAaVi3bl38+Z//ebzyyiutfn3gwIHxuc99Lq655pqoq6s75r7q6+vjpJNOiltuuSWnYz/99NOxefPmuPrqq2PkyJEdLZ3jVFnqAgAAAACA8rZu3bqYNm1anHvuuTFgwIAj4wMGDIhzzz03pk2bFuvXry9hhd2LPNLyx3n069cvTjrppDjppJOiX79+8igBeQAAAABk009MizzSop+YFnkAQFqefPLJOP/881tdjDhs2LB44okn4qWXXorbbrut3cWIERGZTCbGjBnTYvzOO++MJ554otVPQ3zllVfi/PPPjyeffDK/b4K8WZAIAAAAAORlw4YNMW7cuKivr49FixbF888/HwcOHDjy9QMHDsTzzz8fixYtipEjR8a4ceNiw4YNJay4a5NHWuSRFnkAAAAAZNMvSYs80iKPtMgDANLz4x//OCZMmBANDQ1Z43379o3bb789Xnjhhfj4xz8ePXr0yHmfc+bMaXX8xhtvjI9//OPxwgsvxO233x59+/bN+npDQ0Ncdtll8eMf/7jj3wh5syARAAAAAOiQTCYT8+fPj1GjRsWqVatyft2qVati1KhRMX/+/MhkMp1YYfcij7TIIy3yAAAAAMimX5IWeaRFHmmRBwCk6bnnnosrr7wympqassbHjh0bW7ZsienTp0d1dXWH9rl3796YN29ei/EtW7Yc+Xd1dXVMnz49tmzZEueff37W8w4cOBBXXnllPPfccx06LvmzIBEAAAAAyFkmk4mpU6fG7NmzWzSXc9HU1BSzZ8+OqVOn+iNwAcgjLfJIizwAAAAAsumXpEUeaZFHWuQBAGn6n//5n/j0pz/d4vr8qU99Kp5++ukYOHBgXvutq6trMVZfXx9Dhw5tMT5w4MBYsWJFfOpTn8oab2pqik9/+tPxu9/9Lq8a6JhuuSBxwYIFUVFRERUVFbFmzZpSl0OCduzYceRn5PdbdXV1nH766XHVVVfF888/n/X8vXv3Rm1tbfTq1Ss2b97c6j5//3P3+c9/vhjfQpcijzTlmstdd90VFRUVMWnSpDb39dOf/jQqKyvj3HPPjYMHDxbrWwAAACAPCxYsiMWLFx/3fhYvXhwLFiwoQEXdmzzSIo+0yCMt+olpkUda5JEWeQAA0JXpl6RFHmmRR1rkkRb9krTIIy3ySIs8Olcmk4nJkyfHr3/966zxa6+9Nh555JGoqanJa7+rV6+O3bt3txg/1nqvmpqaeOSRR+Laa6/NGv/1r38dkydP9n9IUARVpS6g2H75y1/G3/zN30Tfvn2joaGh1OWQuLq6uvjsZz8bERENDQ2xdu3aWLZsWfzoRz+KFStWxLhx4yIion///vHAAw/EBRdcENdcc02sXr06qqr+8Ou1cePGmDt3bgwaNCjuvPPOknwvXYE80tReLl/60pfi8ccfj6VLl8YVV1wRf/EXf5H1+n379sWkSZOipqYmHn744aysAAAASMuGDRti7ty5Bdvf3Llz4xOf+EQMHz68YPvsTuSRFnmkRR7p0k9MizzSIo+0yAMAgK5GvyQt8kiLPNIij3Tpl6RFHmmRR1rk0TmWLFkSjz32WNbY+PHj47777osePXrktc9MJhNjxoxpMb5w4cLo2bPnMV/bo0ePuO+++2L79u3x7LPPHhn//ve/H/fff39Mnjw5r5rITbf6hMSmpqa45pprYuTIkXH55ZeXuhzKwODBg+PWW2+NW2+9Nb71rW/Fv/3bv8W8efOiqakp/vqv/zrruR/72MfihhtuiOeffz6+8Y1vHBlvamqKq6++OpqamuLBBx+M/v37F/vb6DLkkab2cqmoqIilS5fGCSecEJMnT47XX3896/XTp0+PHTt2xLx58+K9731vib4LAAAAcjFlypRoamoq2P6amppiypQpBdtfdyOPtMgjLfJIl35iWuSRFnmkRR4AAHQ1+iVpkUda5JEWeaRLvyQt8kiLPNIij8Lbv39/zJ49O2vsXe96V3z3u9/NezFiRMScOXNaHZ82bVpOr+/Ro0d897vfjXe9611Z47Nnz479+/fnXRft61YLEv/2b/82Nm3aFA888MBx/cDTvf3lX/5lRESsXbu2xdcWLFgQgwcPjq9//euxbt26iIi47bbbYt26dTF16tT46Ec/WsxSuwV5pOnoXAYNGhR33XVX7Nq1K66//vojz1u+fHncd9998dGPfjS+9KUvlaRWAAAAcrNu3bpYtWpVwfe7atWqWL9+fcH329XJIy3ySIs8yo9+YlrkkRZ5pEUeAACUK/2StMgjLfJIizzKj35JWuSRFnmkRR7HZ+nSpfHGG29kjT344INx+umn573PvXv3xrx581qMb9mypUP7OeOMM+KBBx7IGnv99dfjoYceyrs22tdtFiS+8MIL8bd/+7fxN3/zN3H22WeXuhy6gNY+drdPnz6xdOnSOHToUFx99dXx7//+7zFv3rx4z3veE/Pnzy9Bld2HPNL0x7lMmjQpJkyYEMuWLYvvfe978bvf/S4+//nPxwknnBAPPvhgVFRUlLBSAAAA2nN087Zc9t1VySMt8kiLPMqXfmJa5JEWeaRFHgAAlBv9krTIIy3ySIs8ypd+SVrkkRZ5pEUeHXfo0KG44447ssYuueSSmDBhwnHtt66ursVYfX19DB06tMP7uuyyy+KSSy7JGrvjjjvi0KFDedfHsXWLBYmNjY1x9dVXx8iRI+Pmm28udTmUufvvvz8iIs4///xWv/7hD384vvzlL8fGjRvjggsuiIiIhx56KHr37l20GrsTeaSprVzuu+++OPnkk+OGG26Iz33uc/Hyyy/HXXfdFYMGDSpFmQAAAHTA6tWry3LfXZU80iKPtMij/OgnpkUeaZFHWuQBAEC50i9JizzSIo+0yKP86JekRR5pkUda5JG/xx9/PLZv3541NmPGjOPa5+rVq2P37t0txtesWZP3PqdPn571eNu2bfEv//Ivee+PY2v5kWJd0Ny5c2Pr1q2xdu3a6NGjR6nLOS6ZTCb2799f6jKKrqmpqSTH3bZtW9x6660REdHQ0BBr166NZ555JgYMGBDf+ta32nzd3LlzY/HixfHWW2/FlClT4rzzzitSxS01NTVFQ0NDwfdZCvJoe5+l1JFcBgwYEPfee29ceeWV8fjjj8eECRNi0qRJJaj6sM7IAyg/f3wecE4AIFeuH3Q3TU1NsWHDhk7b/4YNG+LNN9/M+n8ipG3ySIs80iKP9ukn5k9/Vx6dTR4t91lK8igP5ucA5MP1g+5GvyQt8kiLPNIij/bpl+RP/0oenU0eLfdZSvJouc/j8eijj2Y9rq+vj49+9KN57y+TycSYMWNajC9cuDB69uyZ934/9rGPxciRI2PdunVHxv75n/85Lr/88rz3yTFkurif/exnmcrKysxtt92WNX7NNddkIiKzevXqElWWn3379mUiottvX/ziFzv1fX7ppZfaPPZpp52W2bp16zFfP3fu3CPPHzx4cKahoaFT6/1jX/ziF+VxFHl0juPJ5YMf/GAmIjKbN28uSq2/V4o8bDabzWaz2Ww2m81ms9lstpQ3/cS26e+2Th6FJw95HC9//7DZbDabzWaz2Ww2m617bvolbdO/ap08Ck8e8jhe5ZDHoEGDsl7/93//98f1Pc+ePbvVugrhO9/5TtY+a2trO/T6o/Mo1s9uOaqMLuzgwYNxzTXXxPDhw2PWrFmlLocydPHFF0cmk4lMJhOvvvpqfOtb34pXX301JkyYEPv27Wv1NWvXro1vfOMb8Z73vCdmzJgR27Zti9mzZxe58q5JHmnKJ5fevXtn/S8AAAAA0D3oJ6ZFHmmRR1rkAQAAAJBNvyQt8kiLPNIij8L57//+79i5c2fW2Pnnn5/3/vbu3Rvz5s1rMb5ly5a89/nHjq5tx44dsWvXroLsm2zl+5nTOdi3b19s3bo1IqLNj+0cPXp0RET88Ic/jP/1v/5XsUrLW58+fdo8AXZlN910UyxZsqSkNZxyyikxY8aMePPNN+PrX/963HLLLXHXXXdlPaexsTGuvvrqyGQy8dBDD8X73//+eOqpp2LRokVx5ZVXxrhx44pe9+TJk+POO+8s6D7lkb+umsfv5ZJLSjojD6D8NDQ0xIABAyIiYteuXdG3b98SVwRAOXD9oLtpamqKAQMGxIEDBzpl/zU1NbFr166oqurS7cqCkUda5JEWebRPPzF/+rtpkUda5JGW7vT3D/NzAPLh+kF3o1+SFnmkRR5pkUf79Evyp3+VFnmkRR5pSS2Pn//851mP+/fvH+9973vzrqWurq7FWH19fQwdOjTvff6xs88+O/r165e17urnP/95TJgwoSD75w/K944qBzU1NfGXf/mXrX5t5cqVsXXr1pgwYUKccsopUVtbW9zi8lRRUdEtm2DV1dWlLuGIr3zlK/HAAw/Ed77znbjxxhuzfnZuueWW2Lx5c8yePTvOO++8iIh46KGH4oMf/GBce+21sWHDhujTp09R662uri74z4w88tfV8/i9Y+WSks7IAyhvffv2dV4AoMNcP+guhg8fHs8//3yn7fvEE0/slH13VfJIizzSIo9j00/Mn/5uWuSRFnmkpbv+/cP8HIB8uH7QXeiXpEUeaZFHWuRxbPol+dO/Sos80iKPtKSWx/r167Men3vuudGjR4+89rV69erYvXt3i/E1a9bktb/W9OjRI84999x45plnjoytW7fOgsROUFnqAjpT79694/777291GzNmTEREzJ49O+6///4YOXJkaYulbPTu3TtmzpwZTU1N8bWvfe3I+HPPPRd33HFHnHPOOXHrrbceGR85cmTMmTMntm/fHjNnzixBxV2bPNLUVi4AAACUr9GjR5flvrsqeaRFHmmRR/nRT0yLPNIij7TIAwCAcqVfkhZ5pEUeaZFH+dEvSYs80iKPtMgjP3v37s16PHDgwLz2k8lkjqzj+mMLFy6Mnj175rXPthxd4x9/WiKF06UXJEJnue666+JP/uRP4uGHH47t27dHQ0NDfO5zn4sePXrEQw891OKEOGfOnKivr4/FixfHs88+W6Kquy55pOnoXAAAAChv1157bVnuu6uSR1rkkRZ5lCf9xLTIIy3ySIs8AAAoR/olaZFHWuSRFnmUJ/2StMgjLfJIizw6bsSIEfHJT34yLrvssrjooovinHPOyWs/c+bMaXV82rRpx1Neq4YPHx4XXXRRXHbZZfHJT34yRowYUfBjYEEi5KVXr14xe/bsOHjwYHz1q1+Nm2++ObZt2xa33HJL1NfXt3h+VVVVPPTQQ1FdXR2TJk2KhoaGElTddckjTUfnAgAAQHkbOXJkjB07tuD7HTt2rOZvHuSRFnmkRR7lST8xLfJIizzSIg8AAMqRfkla5JEWeaRFHuVJvyQt8kiLPNIij4777Gc/G9/73vfiRz/6USxfvjymT5/e4X3s3bs35s2b12J8y5YthSixhenTp8fy5cvjRz/6UXzve9+Lz3zmM51ynO6uqtQFlMrSpUtj6dKlpS6DRNXW1kYmkznmc6ZMmRJTpkw58njx4sXHfP4555wTjY2NBamvu5FHmvLJ5fd++tOfdlJVAAAAdKa77747Ro0aFU1NTQXZX3V1dbtzeNomj7TIIy3ySI9+YlrkkRZ5pEUeAAB0VfolaZFHWuSRFnmkR78kLfJIizzSIo801dXVtRirr6+PoUOHlqAaCsUnJAIAAAAAORk+fHjcdtttBdvfbbfdFuecc07B9tfdyCMt8kiLPAAAAACy6ZekRR5pkUda5AEAXcfq1atj9+7dLcbXrFlTgmooJAsSAQAAAICczZw5M2644Ybj3s+UKVNi5syZBaioe5NHWuSRFnkAAAAAZNMvSYs80iKPtMgDAMpfJpOJMWPGtBhfuHBh9OzZswQVUUgWJAIAAAAAOauoqIhFixbFvHnzorq6usOvr66ujnnz5sXf/d3fRUVFRSdU2L3IIy3ySIs8AAAAALLpl6RFHmmRR1rkAQDlb86cOa2OT5s2rciV0BksSAQAAAAAOqSioiJmzZoVzz//fIwdOzbn140dOzbWrl0bs2bN8sffApJHWuSRFnkAAAAAZNMvSYs80iKPtMgDAMrX3r17Y968eS3Gt2zZUoJq6AxVpS4AAAAAAChPw4cPj5UrV8b69evjgQceiNWrV8f69evjwIEDERFRU1MTw4cPj9GjR8e1114bI0aMKHHFXZs80iKPtMgDAAAAIJt+SVrkkRZ5pEUeAFB+6urqWozV19fH0KFDS1ANncGCRAAAAADguIwYMSIWLlwYEREHDx6MPXv2RETECSecEFVVWpDFJo+0/HEeb775ZrzjHe+IiIhdu3bFiSeeWMLKuid5AAAAAGTTT0yLPNKin5gWeQBAeVi9enXs3r27xfiaNWtKUA2dxewEAAAAACiYqqqqeNe73lXqMvh/5JGWP/4PhvzHQ6UnDwAAAIBs+olpkUda9BPTIg8ASFMmk4kxY8a0GF+4cGH07NmzBBXRWSpLXQAAAAAAAAAAAAAAAAAA5WvOnDmtjk+bNq3IldDZLEgEAAAAAAAAAAAAAAAAIC979+6NefPmtRjfsmVLCaqhs1mQCAAAAAAAAAAAAAAAAEBe6urqWozV19fH0KFDS1ANnc2CRMpSc3NzqUtIVineG3m0TR5p8d4AAAAAQDY9s7bp76ZFHmmRR1q8NwAAANA96Qm0Tf8qLfJIizzS0lXy+NWvfhW7d+9uMb5mzZqCH6sz+VnNnQWJlIWampqsxwcOHChRJelrbGzMetyrV6+CH0MeuZNHWoqRBwAAAACkTD8xd/q7aZFHWuSRFn//AAAAgO5BvyR3+ldpkUda5JGWrpBHJpOJG2+8scX4woULo2fPngU9VmfTb8+dBYmUhaN/iffv31+iStJ39HvTGSdAeeROHmkpRh4AAAAAkDL9xNzp76ZFHmmRR1r8/QMAAAC6B/2S3OlfpUUeaZFHWrpCHq+++mr853/+Z9bYO9/5zpg2bVpBj1MM+u25syCRsnDyySdnPf7Nb35TokrS9/LLL2c9Pumkkwp+DHnkTh5pKUYeAAAAAJAy/cTc6e+mRR5pkUda/P0DAAAAugf9ktzpX6VFHmmRR1q6Qh4DBgyIzZs3x9y5c6Ompib69u0bGzZsKOgxikW/PXcWJFIWBg8enPV427ZtJaokfVu3bs16PGTIkIIfQx65k0daipEHAAAAAKRMPzF3+rtpkUda5JEWf/8AAACA7kG/JHf6V2mRR1rkkZaukkfv3r3jq1/9amzatCkefvjhOOOMMwp+jGLQb8+dBYmUhaN/iXft2hV79uwpUTXp2rNnT7z66qtZY51xApRHbuSRlmLlAQAAAAAp00/Mjf5uWuSRFnmkxd8/AAAAoPvQL8mN/lVa5JEWeaSlK+ZRV1cXV1xxRafsu7Ppt3eMBYmUhTPPPDMqKiqyxo5eeUzL96SysjLe/e53F/w48siNPNJSrDwAAAAAIGX6ibnR302LPNIij7T4+wcAAAB0H/oludG/Sos80iKPtMgjLfrtHWNBImWhpqYmBg0alDW2YsWKElWTrqeffjrr8aBBg6Kmpqbgx5FHbuSRlmLlAQAAAAAp00/Mjf5uWuSRFnmkxd8/AAAAoPvQL8mN/lVa5JEWeaRFHmnRb+8YCxIpGxdffHHW42XLlpWoknQd/Z4c/Z4VkjzaJ4+0FDMPAAAAAEiZfmL79HfTIo+0yCMt/v4BAAAA3Yt+Sfv0r9Iij7TIIy3ySIt+e8dYkEjZmDhxYtbjtWvXxosvvliiatKzffv2eOGFF7LGjn7PCkkexyaPtBQ7DwAAAABImX7isenvpkUeaZFHWvz9AwAAALof/ZJj079KizzSIo+0yCMt+u0dZ0EiZeMjH/lInHLKKVljixYtKlE16bn77ruzHp966qkxbty4TjuePI5NHmkpdh4AAAAAkDL9xGPT302LPNIij7T4+wcAAAB0P/olx6Z/lRZ5pEUeaZFHWvTbO86CRMpGVVVVXHnllVljixYtil/+8pclqigdGzdubHExuOKKK6KqqqrTjimPtskjLaXIAwAAAABSpp/YNv3dtMgjLfJIi79/AAAAQPekX9I2/au0yCMt8kiLPNKi356fikwmkyl1EZCr7du3x/ve975obGw8MjZu3Lh45plnorKye66vbW5ujvHjx8eqVauOjNXU1MSmTZuirq6uU48tj5bkkZZS5gGUj4aGhujXr19EROzbty/69u1b4ooAKAeuHwDkw/UjLd09D/3ElvR30yKPtMgjLf7+8Qfd/XoOQH5cPwDIh+tHWrp7HvolLelfpUUeaZFHWuSRFv32/HXPnxjKVl1dXdx8881ZYytXrowvfOEL0dzcXKKqSqe5uTm+8IUvZJ38IiJmzpxZlJOfPLLJIy2lzgMAAAAAUqafmK3U/UR5ZJNHWuSRllLnAQAAAJSefkm2UvdL5JFNHmmRR1rkkZZS51HufEIiZWf//v1x9tlnx86dO7PGJ0+eHPfcc0+3WZn9+5PfkiVLssZra2tj8+bN0bt376LUIY/D5JGWVPIAykN3/39MAyA/rh8A5MP1Iy3y0E/8vVT6ifI4TB5pkUdaUskjJa7nAOTD9QOAfLh+pEUe+iW/l0q/RB6HySMt8kiLPNKSSh7lrHv8pNCl9OnTJ+67776oqqrKGl+yZEmMHz8+Nm7cWKLKimfjxo0xfvz4Fie/qqqquPfee4t68pOHPFKTUh4AAAAAkDL9xLT6ifKQR2rkkZaU8gAAAABKT78krX6JPOSRGnmkRR5pSSmPcmZBImXpoosuikcffbTFSXDVqlVRX18fN910U2zfvr1E1XWe7du3x0033RT19fUtPha2qqoqHn300bjooouKXpc85JGCVPMAAAAAgJTpJ6bVT5SHPFIgj7SkmgcAAABQevolafVL5CGPFMgjLfJIS6p5lKuKTCaTKXURkK8f/vCHcdVVV8XBgwdb/fr73//+mDhxYlx44YUxZMiQOOGEE4pc4fHZs2dPbN26NZ5++ulYtmxZvPDCC60+7/cnv8svv7zIFWaTx2HyKI5yywNIV0NDQ/Tr1y8iIvbt2xd9+/YtcUUAlAPXDwDy4fqRFnlk0088LJV+ojwOk0dxyCMt5ZZHqbmeA5AP1w8A8uH6kRZ5ZNMvOSyVfok8DpNHccgjLfJIS7nlUW4sSKTsPfXUU/FXf/VXsWPHjnafe+qpp8aQIUPijDPOiD59+kRNTU1UVqbxQaHNzc3R2NgY+/fvj5dffjm2bt0ar776aruvq62tjXvvvTeZldjykEdn6Cp5AGnSoAQgH64fAOTD9SMt8mhJPzGtfqI85NEZ5CGPrsb1HIB8uH4AkA/Xj7TIoyX9krT6JfKQR2eQhzw6gzzSyqOcWJBIl/DWW2/F/PnzY8GCBdHY2FjqcoqipqYmZs6cGbNmzYrevXuXupws8pBHqaWcB5AeDUoA8uH6AUA+XD/SIo/W6Sem1U+UhzxKTR5pSTmPUnE9ByAfrh8A5MP1Iy3yaJ1+SVr9EnnIo9TkkRZ5pCXlPMqFBYl0Kdu3b4/bb789Hnvssdi9e3epy+kUp556alxxxRUxY8aMqKurK3U5xySPtMgDoHUalADkw/UDgHy4fqRFHsemn5gWeaRFHmmRR/fmeg5APlw/AMiH60da5HFs+iVpkUda5JEWeaRFHnSEBYl0SQcPHoyVK1fGsmXLYvny5bFjx44o1x/1ioqKqK2tjYsvvjgmTpwY48aNi6qqqlKX1SHySIs8ALJpUAKQD9cPAPLh+pEWeeRGPzEt8kiLPNIij+7J9RyAfLh+AJAP14+0yCM3+iVpkUda5JEWeaRFHuTCgkS6hcbGxnjppZdi69atsXXr1nj99dfj7bffjrfffrvUpWXp1atX9OrVK0466aQYMmRIDBkyJN797ndHTU1NqUsrKHmkRR5Ad6dBCUA+XD8AyIfrR1rkkR/9xLTIIy2dlUdTU1MsWbIkIiImT54c1dXVx7U/ecijK3E9ByAfrh8A5MP1Iy3yyI9+YlrkkRb9xLTIIy3OV7TGgkQAALo1DUoA8uH6AUA+XD/SIg+gXDhfpUUeaZEHAPlw/QAgH64faZEHUC6cr9IiDyicylIXAAAAAAAAAAAAAAAAAACkz4JEAAAAAAAAAAAAAAAAAKBdFiQCAAAAAAAAAAAAAAAAAO2yIBEAAAAAAAAAAAAAAAAAaJcFiQAAAAAAAAAAAAAAAABAuyxIBAAAAAAAAAAAAAAAAADaZUEiAAAAAAAAAAAAAAAAANAuCxIBAAAAAAAAAAAAAAAAgHZZkAgAAAAAAAAAAAAAAAAAtMuCRAAAAAAAAAAAAAAAAACgXRYkAgAAAAAAAAAAAAAAAADtsiARAAAAAAAAAAAAAAAAAGiXBYkAAAAAAAAAAAAAAAAAQLssSAQAAAAAAAAAAAAAAAAA2mVBIgAAAAAAAAAAAAAAAADQLgsSAQAAAAAAAAAAAAAAAIB2WZAIAAAAAAAAAAAAAAAAALTLgkQAAAAAAAAAAAAAAAAAoF0WJAIAAAAAAAAAAAAAAAAA7aoqdQFQDI2NjfHiiy/G1q1bY9u2bfHaa6/F22+/HY2NjaUuLUtNTU306tUrTj755Bg8eHAMGTIkzjzzzKipqSl1aQUlj7TIAygXnXW+ampqOvLvm266Kaqrq49rf93lfOX6AQAAAADkSn83Lfq7AAAAAECu9BNpjQWJdEkHDx6MZ599NpYtWxbLly+PnTt3RiaTKXVZeamoqIhBgwbFxRdfHBMnToyPfOQjUVVVXr+68kiLPIByUYrz1ZIlSzplv13hfOX6AQAAAADkSn83Lfq7AAAAAECu9BPJRUWmXH8qoBXbtm2Lb3/72/HYY4/F7t27S11OpzjllFPiyiuvjBkzZkRdXV2pyzkmeaRFHkC5cL5KizwAWtfQ0BD9+vWLiIh9+/ZF3759S1wRAOXA9SMt8gDKhfNVWuRxbPqJaZEHQOtczwHIh+tHWuQBlAvnq7TI49j0E+kICxLpEvbv3x/z58+PBQsWxIEDB0pdTlHU1NTEzTffHLNmzYo+ffqUupws8pBHqaWcB9A256u0zlfySCsPID0alADkw/UjLfIAyoXzVVrk0Tr9xLT6ifJIKw8gPa7nAOTD9SMt8gDKhfNVWuTROv1E/cR8WJBI2Xvqqafiuuuui507d7b73AEDBsTgwYNj4MCB0adPn+jZs2dUVlYWocr2NTc3x4EDB2L//v3xm9/8JrZt2xa7du1q93W1tbVx7733xkUXXVSEKtsnD3l0hq6SB9A256u0zlfySCsPIE0alADkw/UjLfIAyoXzVVrk0ZJ+Ylr9RHmklQeQJtdzAPLh+pEWeQDlwvkqLfJoqav1Ezdu3Bi//e1vo6mpST+xk1mQSFn74Q9/GFdddVUcPHiw1a9/4AMfiIkTJ8YFF1wQQ4YMiRNOOKHIFR6fPXv2xNatW2PFihXx6KOPxgsvvNDq86qqquLRRx+Nyy+/vMgVZpPHYfIojnLLA2ib89VhqZyv5HFYKnkA6dKgBCAfrh9pkQdQLpyv0iKPbPqJh6XST5THYankAaTL9RyAfLh+pEUeQLlwvkqLPLJ1pX5ic3NzfOUrX4kFCxbED37wg7j88sv1EzuZBYmUrbZOfj169IipU6fG1KlT48wzzyxRdZ1j+/btcffdd8eiRYvi0KFDWV8r9UlQHvIotZTzANrmfJXW+UoeaeUBpE2DEoB8uH6kRR5AuXC+Sos8/kA/Ma1+ojzSygNIm+s5APlw/UiLPIBy4XyVFnn8QVfqJ7711ltx9dVXx/e///2IiPjtb38bp512Wovn6ScWlgWJlKWnnnoqLr300hYnv3HjxsXixYtj2LBhJaqsOH75y1/GDTfcECtXrswar6qqip/85CdF/7hYecgjJanlAbTN+Sqt85U80soDSJ8GJQD5cP1IizyAcuF8lRZ5HKafmFY/UR5p5QGkz/UcgHy4fqRFHkC5cL5KizwO60r9xF27dsWECRPiF7/4RURE1NbWxksvvXTM1+gnFkZlqQuAjtq/f39cd911LU5+kydPjmeeeaasTn75GjZsWDzzzDMxefLkrPGDBw/GX/3VX8Vbb71VtFrkIY/UpJQH0Dbnq7TOV/JIKw8AAAAASJl+Ylr9RHmklQcAAAAApKwr9RM3bdoU55133pHFiBERo0ePbvd1+omFYUEiZWf+/Pmxc+fOrLHJkyfHPffcE5WV3edHurKyMu65554WJ8EdO3bE/Pnzi1aHPA6TR1pSyQNom/PVYamcr+RxWCp5AAAAAEDK9BMPS6WfKI/DUskDAAAAAFLWVfqJK1asiDFjxrT4XnJZkBihn1gIFZlMJlPqIiBX27Zti2HDhkVjY+ORsXHjxsUzzzxTVie/Qmpubo7x48fHqlWrjozV1NTEpk2boq6urlOPLY+W5JGWUuYBtM35qiXXj7S4fgC5aGhoiH79+kVExL59+6Jv374lrgiAcuD6kRZ5AOXC+Sot3T0P/cSW9HfTor8L5KK7X88ByI/rR1rkAZQL56u0dPc8uko/8f7774/rr7++xac8RkT8x3/8R4waNSrnfekn5q98fmIgIr797W9nnfx69OgRixcvLquTX6FVVlbG4sWLo0ePHkfGGhsb4/bbb+/0Y8ujJXmkpZR5AG1zvmrJ9SMtrh8AAAAA0Dr9xJb0d9OivwsAAAAArSv3fmJzc3PMnDkzJk+e3OpixN69e8eIESM6tE/9xPyVx08NRMTBgwfjscceyxqbOnVqDBs2rEQVpeOcc86JqVOnZo394Ac/aPUkWyjyaJs80lKKPIC2OV+1zfUjLa4fAAAAAJBNP7Ft+rtp0d8FAAAAgGzl3k9866234qqrropvfvObbT5n1KhRUV1d3eF96yfmx4JEysazzz4bu3fvzho7+pe+O5syZUrW41dffTVWrlzZaceTx7HJIy3FzgNom/PVsbl+pMX1AwAAAAD+QD/x2PR306K/CwAAAAB/UM79xF27dsX48eNbLKg82ujRo/M+hn5ix1mQSNlYtmxZ1uMPfOADceaZZ5aomvTU1dXF+9///qyxo9+zQpLHsckjLcXOA2ib89WxuX6kxfUDAAAAAP5AP/HY9HfTor8LAAAAAH9Qrv3ETZs2xXnnnRe/+MUvssYrK1suhzueBYn6iR1nQSJlY/ny5VmPJ06cWKJK0nX0e3L0e1ZI8mifPNJSzDyAtjlftc/1Iy2uHwAAAABwmH5i+/R306K/CwAAAACHlWM/8emnn44xY8bEzp07s8ZPPPHEuP3221s8/0Mf+tBxHU8/sWMsSKQsNDY2tjiJXHDBBSWqJl0XXnhh1uOdO3dGY2NjwY8jj9zIIy3FygNom/NVblw/0uL6AQAAAAD6ibnS302L/i4AAAAAlGc/ccmSJXHJJZfEnj17ssZra2vjZz/7WfTp06fF+GmnnXZcx9RP7BgLEikLL774YmQymayxs846q0TVpGvIkCFZj5ubm+Oll14q+HHkkRt5pKVYeQBtc77KjetHWlw/AAAAAEA/MVf6u2nR3wUAAACA8uonNjc3x8yZM+O6666LQ4cOZX3tvPPOizVr1sTZZ58dq1evzvra6NGjj/vY+okdY0EiZWHr1q1ZjwcMGBD9+/cvUTXpOuGEE+LUU0/NGjv6vSsEeeRGHmkpVh5A25yvcuP6kRbXDwAAAADQT8yV/m5a9HcBAAAAoHz6ifv374+rrroqvvnNb7b69UceeSQGDBgQEdEpCxL1EzvGgkTKwrZt27IeDx48uESVpO/oVdmdcQKUR+7kkZZi5AG0zfkqd64faXH9AAAAAKC700/Mnf5uWvR3AQAAAOjuyqWf+MYbb8Rbb73V5tfPOuusuOSSS+K1116L//qv/8r6WiEWJEboJ3aEBYmUhddeey3r8cCBA0tUSfrOOOOMrMevv/56wY8hj9zJIy3FyANom/NV7lw/0uL6AQAAAEB3p5+YO/3dtOjvAgAAANDdlUs/8Ywzzoh//dd/jccffzxqa2tbfc6TTz4Zp5xyStZY7969Y8SIEQWr4Y/pJ7bNgkTKwttvv531uE+fPiWqJH1HvzdHv3eFII/cySMtxcgDaJvzVe5cP9Li+gEAAABAd6efmDv93bTo7wIAAADQ3aXcTzx06FAcOnToyOOKioqYMGFCbN68OebOnZvTPkaNGhXV1dUFqUc/MXdVpS4ActHY2Jj1uGfPniWqJH01NTVZjzvjBCiP3MkjLcXIA2ib81XuXD/S4voBAAAAQHenn5g7/d206O8CAAAA0N2Vup944MCBWL9+fda2adOm2Lt3bzQ1NUVERHV1dfTv3z/e9773xYgRI2LEiBHxp3/6pzntf/To0QWrVT8xdxYkUpYqK324Z1tK8d7Io23ySIv3BtLid7Jtrh9p8d4AAAAAQDY9s7bp76bFewMAAAAA2YrVM1u3bl088MAD8Y//+I/xxhtvHPO5TU1N8cYbb8SqVati1apVHTpOIRck6ifmzoJEAAAAAAAAAAAAAAAAAPJ28ODB+Id/+Ie45557Yt26dQXf/6WXXhorVqzI+tTHD33oQwU/Du2zIBEAAAAAAAAAAAAAAACAvKxevTquv/76WL9+facd4yc/+UkMHTo03vnOd8bq1aujtrY2TjvttE47Hm2zIBEAAAAAAAAAAAAAAACADnn99ddj1qxZcf/99x/zeWeddVaMGDHiyHb66adHTU1NREQ0NjbGK6+8EuvXr4+vfe1rWZ+AeLRf/epXERFx4YUXxrBhwwr3jdAhFiQCAAAAAAAAJKqpqanVfwMAAAAAkDb9Xbq6devWxZ//+Z/HK6+80urXBw4cGJ/73Ofimmuuibq6umPuq76+Pk466aS45ZZbcjr2008/HZs3b46rr746Ro4c2dHSOU6VpS4AAAAAAAAAgD9Yt25dTJs2Lc4999wYMGDAkfEBAwbEueeeG9OmTYv169eXsEIAAAAAAFqjv0t38eSTT8b555/f6mLEYcOGxRNPPBEvvfRS3Hbbbe0uRoyIyGQyMWbMmBbjd955ZzzxxBOtfhriK6+8Eueff348+eST+X0T5M2CRAAAAAAAAIAEbNiwIcaNGxf19fWxaNGieP755+PAgQNHvn7gwIF4/vnnY9GiRTFy5MgYN25cbNiwoYQVAwAAAAAQob9L9/LjH/84JkyYEA0NDVnjffv2jdtvvz1eeOGF+PjHPx49evTIeZ9z5sxpdfzGG2+Mj3/84/HCCy/E7bffHn379s36ekNDQ1x22WXx4x//uOPfCHmzIBEAAAAAAACghDKZTMyfPz9GjRoVq1atyvl1q1atilGjRsX8+fMjk8l0YoUAAAAAALRGf5fu5rnnnosrr7wympqassbHjh0bW7ZsienTp0d1dXWH9rl3796YN29ei/EtW7Yc+Xd1dXVMnz49tmzZEueff37W8w4cOBBXXnllPPfccx06LvmzIBEAAAAAAACgRDKZTEydOjVmz57d4o/3uWhqaorZs2fH1KlT/UcrAAAAAABFpL9Ld/M///M/8elPf7rFz/unPvWpePrpp2PgwIF57beurq7FWH19fQwdOrTF+MCBA2PFihXxqU99Kmu8qakpPv3pT8fvfve7vGqgY7r8gsTa2tqoqKhodRs/fnypyyNRO3bsaPHzUl1dHaeffnpcddVV8fzzz2c9f+/evVFbWxu9evWKzZs3t7rPBQsWREVFRXz+858vxrfQpcgjTbnmctddd0VFRUVMmjSpzX399Kc/jcrKyjj33HPj4MGDxfoWgG7C+Sot8gAAAADItmDBgli8ePFx72fx4sWxYMGCAlQE6dBPTIs8AAAAALLp79KdZDKZmDx5cvz617/OGr/22mvjkUceiZqamrz2u3r16ti9e3eL8TVr1rT5mpqamnjkkUfi2muvzRr/9a9/HZMnT7bAtwiqSl1AMZx44olx4403thivra0tei2Ul7q6uvjsZz8bERENDQ2xdu3aWLZsWfzoRz+KFStWxLhx4yIion///vHAAw/EBRdcENdcc02sXr06qqr+8Ou1cePGmDt3bgwaNCjuvPPOknwvXYE80tReLl/60pfi8ccfj6VLl8YVV1wRf/EXf5H1+n379sWkSZOipqYmHn744aysAArJ+Sot8gAAAACI2LBhQ8ydO7dg+5s7d2584hOfiOHDhxdsn5AC/cS0yAMAAABAf5fuZ8mSJfHYY49ljY0fPz7uu+++6NGjR177zGQyMWbMmBbjCxcujJ49ex7ztT169Ij77rsvtm/fHs8+++yR8e9///tx//33x+TJk/Oqidx0i67uO97xjrj11ltLXQZlaPDgwS1+dubPnx+zZ8+Ov/7rv846aX3sYx+LG264Ie6+++74xje+ceTmoqmpKa6++upoamqKBx98MPr371/Mb6FLkUeacsll6dKlMXz48Jg8eXJs2rQpTjrppCPPnT59euzYsSPuvPPOeO9731vk6oHuxPkqLfIAAAAAiJgyZUo0NTUVbH9NTU0xZcqUWLlyZcH2CSnQT0yLPAAAAAD0d+le9u/fH7Nnz84ae9e73hXf/e53816MGBExZ86cVsenTZuW0+t79OgR3/3ud2PEiBHxxhtvHBmfPXt2fOYzn4k+ffrkXRvHVlnqAqDc/OVf/mVERKxdu7bF1xYsWBCDBw+Or3/967Fu3bqIiLjtttti3bp1MXXq1PjoRz9azFK7BXmk6ehcBg0aFHfddVfs2rUrrr/++iPPW758edx3333x0Y9+NL70pS+VpFage3O+Sos8AAAAgO5k3bp1sWrVqoLvd9WqVbF+/fqC7xdSo5+YFnkAAAAA3Yn+Lt3N0qVLsxb8RUQ8+OCDcfrpp+e9z71798a8efNajG/ZsqVD+znjjDPigQceyBp7/fXX46GHHsq7NtrXLRYkNjY2xtKlS+Mb3/hG3H333fHzn/+81CXRBVRVtfyA0T59+sTSpUvj0KFDcfXVV8e///u/x7x58+I973lPzJ8/vwRVdh/ySNMf5zJp0qSYMGFCLFu2LL73ve/F7373u/j85z8fJ5xwQjz44INRUVFRwkqB7s75Ki3yAAAAALqDo/84Xi77htToJ6ZFHgAAAEB3oL9Ld3Lo0KG44447ssYuueSSmDBhwnHtt66ursVYfX19DB06tMP7uuyyy+KSSy7JGrvjjjvi0KFDedfHsXWLBYn//d//HZMmTYo5c+bE1KlT40Mf+lB88IMfjO3bt5e6NMrQ/fffHxER559/fqtf//CHPxxf/vKXY+PGjXHBBRdERMRDDz0UvXv3LlqN3Yk80tRWLvfdd1+cfPLJccMNN8TnPve5ePnll+Ouu+6KQYMGlaJMAOerxMgDAAAA6E5Wr15dlvuGVOgnpkUeAAAAQHeiv0t38vjjj7dYfzVjxozj2ufq1atj9+7dLcbXrFmT9z6nT5+e9Xjbtm3xL//yL3nvj2Nr+ZFiXcykSZNi7NixMWzYsOjXr1/813/9V9xxxx3xyCOPxJ/92Z/Fxo0bo3///qUuM2eZTCb2799f6jKKrqmpqSTH3bZtW9x6660REdHQ0BBr166NZ555JgYMGBDf+ta3/n/27j/M6rrOG/9rhhmGH2pb/sA7JUYHlAyBMcxglbT1R24trnLhldVt6oppAunKJRLebFlXQFlKSKti5o92vVfSdNuuRLkvE9aFXPXmR0AFKJR+C1ArYMBhYM73D27Jw5kfZw7nnM/nzDwe1/W59LznzOfz4rzmfN7v85S30+73zZw5M+bPnx+7d++OSZMmxRlnnFGminO1tLREU1NT0c+ZBP1o/5xJ6kpfBgwYEPfcc0+MHz8+nnzyyRg3blxceeWVCVS9Xyn6AbTP/apw5o/u3w+g8rz7PuCeAEC+zB/poh9AklpaWmLVqlUlO/+qVaviz3/+c9ZvKqM4eur8IU8snHy3+/cDqDw9dT4H4NCYP9JFP4AkyXcrV0+dPw41T3z00UezHjc2NsY555xT8PkymUyMGTMmZ3zu3LnRu3fvgs/78Y9/PEaOHBkrVqw4MPZv//ZvcfHFFxd8TjqQ6aH+5//8n5mIyHz7299OupQu2blzZyYievzxxS9+saSv86uvvtrutY899tjM+vXrO/z+mTNnHnj+4MGDM01NTSWt992++MUv6sdB9KM0DqUvH/nIRzIRkVm7dm1Zan1HEv1wOBztH+5X7TN/tK0n9cPhcDgcDofD4XA4HA6Hw+FI8yFPbJ98t209qR8Oh8PhcDgcDofD4XA4HA5Hmo+u5omDBg3K+v5//ud/PqTMbvr06W3WVQzf+973ss5ZX1/fpe8/OE8sV/Zaiaqjh/rCF74QERHPP/98wpWQZhdccEFkMpnIZDKxdevW+Na3vhVbt26NcePGxc6dO9v8npdeeim+8Y1vxMknnxxTp06NDRs2xPTp08tcefekH+lUSF/69u2b9U+AcnC/Shf9AAAAAADyJU9MF/0AAAAAgJ7hD3/4Q2zevDlr7Mwzzyz4fDt27IhZs2bljK9bt67gc77bwbVt2rQptmzZUpRzk63H/g7Xo446KiIq79es9uvXr90Avzu78cYbY8GCBYnWcPTRR8fUqVPjz3/+c3z961+PW2+9Ne68886s5zQ3N8fll18emUwmHnzwwTjttNPi6aefjnnz5sX48eNj7NixZa974sSJcccddxT1nPpRuO7aj3fk05c0KUU/gPa5XxXO/JEu5g8gYn+eMGDAgIiI2LJlS/Tv3z/higCoBOaPdNEPIEktLS0xYMCA2LNnT0nOX1dXF1u2bImamh77n4NLpqfOH/LEwsl300W+C0T03PkcgENj/kgX/QCSJN+tXD11/jiUPPEXv/hF1uPDDz88PvjBDxZcS0NDQ85YY2NjDB06tOBzvtspp5wShx12WNa+q1/84hcxbty4opyfv+ixd6h33hT19fXJFtJFVVVVPeam9261tbVJl3DAl7/85bj//vvje9/7Xtxwww1ZP0O33nprrF27NqZPnx5nnHFGREQ8+OCD8ZGPfCSuuuqqWLVqVfTr16+s9dbW1hb9Z0Y/Ctfd+/GOjvqSJqXoB9A+96vCmT/SxfwBHKx///7uCwB0mfkjXfQDSMLw4cPjxRdfLNm53/Oe95Tk3PxFT5o/5ImFk++mi3wXOFhPms8BKB7zR7roB5AE+W7l60nzx6HkiStXrsx6fPrpp0evXr0KOteyZcti27ZtOePLly8v6Hxt6dWrV5x++unx7LPPHhhbsWKFDYklUJ10AaX0q1/9Knbt2tXm+LRp0yIi4jOf+Uy5y6LC9e3bN6ZNmxYtLS3xta997cD4888/H9/5znfi1FNPja985SsHxkeOHBkzZsyIjRs3Hvi5o3j0I53a6wtA2rhfpYt+AAAAAD3J6NGjK/LckBbyxHTRDwAAAKAnke/SU+zYsSPr8cCBAws6TyaTiTFjxuSMz507N3r37l3QOdtzcI3v/m2JFE+33pD4v//3/45jjz02PvWpT8X1118fN998c/z93/99DB8+PP7whz/E9OnTY+zYsUmXSQW65ppr4v3vf3889NBDsXHjxmhqaoorrrgievXqFQ8++GDODXHGjBnR2NgY8+fPj+eeey6hqrsv/Uing/sCkFbuV+miHwAAAEBPcdVVV1XkuSFN5Inpoh8AAABATyHfpacYMWJEfPrTn46LLroozj///Dj11FMLOs+MGTPaHJ8yZcqhlNem4cOHx/nnnx8XXXRRfPrTn44RI0YU/Rp08w2J55xzTlx44YXxm9/8Jn74wx/GHXfcEb/4xS/ib//2b2PRokXxjW98I+kSqVB9+vSJ6dOnx969e+OrX/1q3HzzzbFhw4a49dZbo7GxMef5NTU18eCDD0ZtbW1ceeWV0dTUlEDV3Zd+pNPBfQFIK/erdNEPAAAAoKcYOXJknHXWWUU/71lnneU/rtNjyBPTRT8AAACAnkK+S0/xuc99Lh555JF44oknYtGiRXHTTTd1+Rw7duyIWbNm5YyvW7euGCXmuOmmm2LRokXxxBNPxCOPPBKf/exnS3Kdnq4m6QJK6WMf+1h87GMfS7oMKlB9fX1kMpkOnzNp0qSYNGnSgcfz58/v8PmnnnpqNDc3F6W+nkY/0qmQvrzj5z//eYmqAsjlfpUu+gEAAADwF3fddVeMGjUqWlpainK+2traTv8bCVQSeWK66AcAAADAX8h3IT8NDQ05Y42NjTF06NAEqqFYuvVvSAQAAAAAAABIq+HDh8dtt91WtPPddtttceqppxbtfAAAAAAAtE2+C51btmxZbNu2LWd8+fLlCVRDMdmQCAAAAAAAAJCQadOmxfXXX3/I55k0aVJMmzatCBUBAAAAAJAP+S60L5PJxJgxY3LG586dG717906gIorJhkQAAAAAAACAhFRVVcW8efNi1qxZUVtb2+Xvr62tjVmzZsV3v/vdqKqqKkGFAAAAAAC0Rb4L7ZsxY0ab41OmTClzJZSCDYkAAAAAAAAACaqqqopbbrklXnzxxTjrrLPy/r6zzjorXnrppbjlllv8ZRUAAAAAgATIdyHXjh07YtasWTnj69atS6AaSqEm6QIAAAAAAAAAiBg+fHgsWbIkVq5cGffff38sW7YsVq5cGXv27ImIiLq6uhg+fHiMHj06rrrqqhgxYkTCFQMAAAAAECHfhXdraGjIGWtsbIyhQ4cmUA2lYEMiAAAAAAAAQIqMGDEi5s6dGxERe/fuje3bt0dExBFHHBE1Nf4TLwAAAABAWsl36emWLVsW27Ztyxlfvnx5AtVQKu5mAAAAAAAAAClVU1MT73vf+5IuAwAAAACALpLv0tNkMpkYM2ZMzvjcuXOjd+/eCVREqVQnXQAAAAAAAAAAAAAAAAAAlWvGjBltjk+ZMqXMlVBqNiQCAAAAAAAAAAAAAAAAUJAdO3bErFmzcsbXrVuXQDWUmg2JAAAAAAAAAAAAAAAAABSkoaEhZ6yxsTGGDh2aQDWUmg2JVKTW1takS0itJF4b/WiffqSL1wbSxXuyfeaPdPHaAAAAAEA2mVn75Lvp4rUBAAAAgGylyMx+9atfxbZt23LGly9fXvRrlZI8MX82JFIR6urqsh7v2bMnoUrSr7m5Oetxnz59in4N/ciffqRLOfoBtM/9Kn/mj3QxfwAAAADQ08kT8yffTRf5LgAAAAA9XanzxEwmEzfccEPO+Ny5c6N3795FvVapyRPzZ0MiFeHgN/GuXbsSqiT9Dn5tSnED1I/86Ue6lKMfQPvcr/Jn/kgX8wcAAAAAPZ08MX/y3XSR7wIAAADQ05U6T9y6dWv8+te/zhp773vfG1OmTCnqdcpBnpg/GxKpCEcddVTW49/97ncJVZJ+r732WtbjI488sujX0I/86Ue6lKMfQPvcr/Jn/kgX8wcAAAAAPZ08MX/y3XSR7wIAAADQ05U6TxwwYECsXbs2Zs6cGXV1ddG/f/9YtWpVUa9RLvLE/NmQSEUYPHhw1uMNGzYkVEn6rV+/PuvxkCFDin4N/ciffqRLOfoBtM/9Kn/mj3QxfwAAAADQ08kT8yffTRf5LgAAAAA9XTnyxL59+8ZXv/rVWLNmTTz00ENx/PHHF/0a5SBPzJ8NiVSEg9/EW7Zsie3btydUTXpt3749tm7dmjVWihugfuRHP9KlXP0A2ud+lR/zR7qYPwAAAABAnpgv+W66yHcBAAAAoLx5YkNDQ1xyySUlOXepyRO7xoZEKsKJJ54YVVVVWWMH7zwm9zWprq6OE044oejX0Y/86Ee6lKsfQPvcr/Jj/kgX8wcAAAAAyBPzJd9NF/kuAAAAAMgT8yVP7BobEqkIdXV1MWjQoKyxxYsXJ1RNej3zzDNZjwcNGhR1dXVFv45+5Ec/0qVc/QDa536VH/NHupg/AAAAAECemC/5brrIdwEAAABAnpgveWLX2JBIxbjggguyHi9cuDChStLr4Nfk4NesmPSjc/qRLuXsB9A+96vOmT/SxfwBAAAAAPvJEzsn300X+S4AAAAA7CdP7Jw8sWtsSKRiTJgwIevxSy+9FK+88kpC1aTPxo0b4+WXX84aO/g1Kyb96Jh+pEu5+wG0z/2qY+aPdDF/AAAAAMBfyBM7Jt9NF/kuAAAAAPyFPLFj8sSusyGRivGxj30sjj766KyxefPmJVRN+tx1111Zj4855pgYO3Zsya6nHx3Tj3Qpdz+A9rlfdcz8kS7mDwAAAAD4C3lix+S76SLfBQAAAIC/kCd2TJ7YdTYkUjFqampi/PjxWWPz5s2LX/7ylwlVlB6rV6/OmQwuueSSqKmpKdk19aN9+pEuSfQDaJ/7VfvMH+li/gAAAACAbPLE9sl300W+CwAAAADZ5IntkycWxoZEKsrUqVOjrq7uwON9+/bF9ddfH62trQlWlazW1ta4/vrrY9++fQfG6urqYurUqSW/tn7k0o90SbIfQPvcr3KZP9LF/AEAAAAAbZMn5pLvpot8FwAAAADaJk/MJU8snA2JVJSGhoa4+eabs8aWLFkS1157bY+8Cba2tsa1114bS5cuzRqfNm1aNDQ0lPz6+pFNP9Il6X4A7XO/ypb0/Uo/siXdDwAAAABIM3litqTzRP3IlnQ/AAAAACDN5InZ5ImHpiqTyWSSLgK6YteuXXHKKafE5s2bs8YnTpwYd999d1RX94x9tu/c/BYsWJA1Xl9fH2vXro2+ffuWpQ792E8/0iUt/QDa5361X1ruV/qxX1r6AVSGpqamOOywwyIiYufOndG/f/+EKwKgEpg/0kU/ACiE+UOe+I605In6sV9a+gFUBvM5AIUwf6SLfgBQCPOHPPEd8sRD1zN+UuhW+vXrF/fee2/U1NRkjS9YsCDOPvvsWL16dUKVlc/q1avj7LPPzrn51dTUxD333FPWm59+6EfapKkfQPvcr9J1v9KPdPUDAAAAANJMnpiuPFE/0tUPAAAAAEgzeaI8sVhsSKQinX/++fHoo4/m3ASXLl0ajY2NceONN8bGjRsTqq50Nm7cGDfeeGM0Njbm/FrYmpqaePTRR+P8888ve136oR9pkNZ+AO1zv0rX/Uo/0tUPAAAAAEgzeWK68kT9SFc/AAAAACDN5InyxGKoymQymaSLgEL9+Mc/jksvvTT27t3b5tdPO+20mDBhQpx33nkxZMiQOOKII8pc4aHZvn17rF+/Pp555plYuHBhvPzyy20+752b38UXX1zmCrPpx376UR6V1g+gfe5X+6XlfqUf+6WlH0B6NTU1xWGHHRYRETt37oz+/fsnXBEAlcD8kS76AUAhzB/Z5In7pSVP1I/90tIPIL3M5wAUwvyRLvoBQCHMH9nkifvJEwtjQyIV7+mnn44vfOELsWnTpk6fe8wxx8SQIUPi+OOPj379+kVdXV1UV6fjF4W2trZGc3Nz7Nq1K1577bVYv359bN26tdPvq6+vj3vuuSc1O7H1Qz9Kobv0A2if+1W67lf6ka5+AOkkoASgEOaPdNEPAAph/sglT0xXnqgf6eoHkE7mcwAKYf5IF/0AoBDmj1zyRHlioWxIpFvYvXt3zJ49O+bMmRPNzc1Jl1MWdXV1MW3atLjllluib9++SZeTRT/0I2lp7gfQPverdN2v9CNd/QDSR0AJQCHMH+miHwAUwvzRNnliuvJE/UhXP4D0MZ8DUAjzR7roBwCFMH+0TZ4oTyyEDYl0Kxs3bozbb789Hnvssdi2bVvS5ZTEMcccE5dccklMnTo1Ghoaki6nQ/qRLvoBVAr3q3TRD4C2CSgBKIT5I130A4BCmD86Jk9MF/0AaJv5HIBCmD/SRT8AKIT5o2PyRLrChkS6pb1798aSJUti4cKFsWjRoti0aVNU6o96VVVV1NfXxwUXXBATJkyIsWPHRk1NTdJldYl+pIt+AJXC/Spd9AMgm4ASgEKYP9JFPwAohPkjP/LEdNEPgGzmcwAKYf5IF/0AoBDmj/zIE8mHDYn0CM3NzfHqq6/G+vXrY/369fHmm2/G22+/HW+//XbSpWXp06dP9OnTJ4488sgYMmRIDBkyJE444YSoq6tLurSi0o900Q+gUrhfpUup+tHS0hILFiyIiIiJEydGbW3tIZ2vp/QDKD8BJQCFMH+ki34AUAjzR2Hku+ki3wV6OvM5AIUwf6SLfgBQCPNHYeS7tMWGRAAAIDV84AcqhfsVAIUwf6SLfgBQCPMHtM/7A6gU7lcAFML8kS76AUAhzB9QPNVJFwAAAAAAAAAAAAAAAAAApJ8NiQAAAAAAAAAAAAAAAABAp2xIBAAAAAAAAAAAAAAAAAA6ZUMiAAAAAAAAAAAAAAAAANApGxIBAAAAAAAAAAAAAAAAgE7ZkAgAAAAAAAAAAAAAAAAAdMqGRAAAAAAAAAAAAAAAAACgUzYkAgAAAAAAAAAAAAAAAACdsiERAAAAAAAAAAAAAAAAAOiUDYkAAAAAAAAAAAAAAAAAQKdsSAQAAAAAAAAAAAAAAAAAOmVDIgAAAAAAAAAAAAAAAADQKRsSAQAAAAAAAAAAAAAAAIBO2ZAIAAAAAAAAAAAAAAAAAHTKhkQAAAAAAAAAAAAAAAAAoFM2JAIAAAAAAAAAAAAAAAAAnbIhEQAAAAAAAAAAAAAAAADolA2JAAAAAAAAAAAAAAAAAECnbEgEAAAAAAAAAAAAAAAAADpVk3QBUA7Nzc3xyiuvxPr162PDhg3xxhtvxNtvvx3Nzc1Jl5alrq4u+vTpE0cddVQMHjw4hgwZEieeeGLU1dUlXVpR6Ue66AcAAABAtlLlJS0tLQf+/cYbb4za2tpDOp+8BAAAAAAgm3wXAKC47DegLTYk0i3t3bs3nnvuuVi4cGEsWrQoNm/eHJlMJumyClJVVRWDBg2KCy64ICZMmBAf+9jHoqamst66+pEu+gEAAACQLYm8ZMGCBSU5r7wEAAAAAOhJ5LsAAMVlvwH5qMpU6k8FtGHDhg3x7W9/Ox577LHYtm1b0uWUxNFHHx3jx4+PqVOnRkNDQ9LldEg/0kU/AKgETU1Ncdhhh0VExM6dO6N///4JVwTQNvcrgO5BXtKzmc8BKIT5A9rn/QFUCvcrgO5Bvtuzmc8BKIT5o2PWV3SFDYl0C7t27YrZs2fHnDlzYs+ePUmXUxZ1dXVx8803xy233BL9+vVLupws+qEfSUtzPwDomA/8QKVwvwKobPISeUmE+RyAwpg/oH3eH0ClcL8CqGzyXfluhPkcgMKYP9pmfWV9VQgbEql4Tz/9dFxzzTWxefPmTp87YMCAGDx4cAwcODD69esXvXv3jurq6jJU2bnW1tbYs2dP7Nq1K373u9/Fhg0bYsuWLZ1+X319fdxzzz1x/vnnl6HKzumHfpRCd+kHAJ3zgR+oFO5XAJVLXiIveYf5HIBCmD+gfd4fQKVwvwKoXPJd+e47zOcAFML8kau7ra9Wr14dv//976OlpcX6qsRsSKSi/fjHP45LL7009u7d2+bXP/zhD8eECRPi3HPPjSFDhsQRRxxR5goPzfbt22P9+vWxePHiePTRR+Pll19u83k1NTXx6KOPxsUXX1zmCrPpx376UR6V1g8A8uMDP1Ap3K8AKpO8ZD95yX7mcwAKYf6A9nl/AJXC/QqgMsl395Pv7mc+B6AQ5o9s3Wl91draGl/+8pdjzpw58fjjj8fFF19sfVViNiRSsdq7+fXq1SsmT54ckydPjhNPPDGh6kpj48aNcdddd8W8efNi3759WV9L+iaoH/qRtDT3A4D8+cAPVAr3K4DKIy+RlxzMfA5AIcwf0D7vD6BSuF8BVB75rnz3YOZzAAph/viL7rS+2r17d1x++eXxox/9KCIifv/738exxx6b8zzrq+KyIZGK9PTTT8cnP/nJnJvf2LFjY/78+TFs2LCEKiuPX/7yl3H99dfHkiVLssZramripz/9adl/Xax+6EeapK0fAHSND/xApXC/Aqgs8hJ5SVvM5wAUwvwB7fP+ACqF+xVAZZHvynfbYj4HoBDmj/260/pqy5YtMW7cuHjhhRciIqK+vj5effXVDr/H+qo4qpMuALpq165dcc011+Tc/CZOnBjPPvtsRd38CjVs2LB49tlnY+LEiVnje/fujS984Quxe/fustWiH/qRNmnqBwAAAJA8eYm8BAAAAACoTPJd+S4AUFzdaX21Zs2aOOOMMw5sRoyIGD16dKffZ31VHDYkUnFmz54dmzdvzhqbOHFi3H333VFd3XN+pKurq+Puu+/OuQlu2rQpZs+eXbY69GM//UiXtPQDAAAASJ68ZD95CQAAAABQaeS7+8l3AYBi6S7rq8WLF8eYMWNy/iz5bEiMsL4qhqpMJpNJugjI14YNG2LYsGHR3Nx8YGzs2LHx7LPPVtTNr5haW1vj7LPPjqVLlx4Yq6urizVr1kRDQ0NJr60fufQjXZLsBwCFaWpqisMOOywiInbu3Bn9+/dPuCKAtrlfAVQGeUkueclfmM8BKIT5A9rn/QFUCvcrgMog380l3/0L8zkAhejp80d3WV/dd999cd111+X8lseIiP/+7/+OUaNG5X0u66vCVc5PDETEt7/97aybX69evWL+/PkVdfMrturq6pg/f3706tXrwFhzc3PcfvvtJb+2fuTSj3RJsh8AAABA8uQlueQlAAAAAEAlkO/mku8CAIei0tdXra2tMW3atJg4cWKbmxH79u0bXOwGpQAAdNZJREFUI0aM6NI5ra8KVxk/NRARe/fujcceeyxrbPLkyTFs2LCEKkqPU089NSZPnpw19vjjj7d5ky0W/WiffqRLEv0AAAAAkicvaZ+8BAAAAABIM/lu++S7AEAhKn19tXv37rj00kvjm9/8ZrvPGTVqVNTW1nb53NZXhbEhkYrx3HPPxbZt27LGDn7T92STJk3Kerx169ZYsmRJya6nHx3Tj3Qpdz8AAACA5MlLOiYvAQAAAADSSr7bMfkuANBVlby+2rJlS5x99tk5GyoPNnr06IKvYX3VdTYkUjEWLlyY9fjDH/5wnHjiiQlVkz4NDQ1x2mmnZY0d/JoVk350TD/Spdz9AAAAAJInL+mYvAQAAAAASCv5bsfkuwBAV1Xq+mrNmjVxxhlnxAsvvJA1Xl2dux3uUDYkWl91nQ2JVIxFixZlPZ4wYUJClaTXwa/Jwa9ZMelH5/QjXcrZDwAAACB58pLOyUsAAAAAgDSS73ZOvgsAdEUlrq+eeeaZGDNmTGzevDlr/D3veU/cfvvtOc//6Ec/ekjXs77qGhsSqQjNzc05N5Fzzz03oWrS67zzzst6vHnz5mhubi76dfQjP/qRLuXqBwAAAJA8eUl+5CUAAAAAQNrId/Mj3wUA8lWJ66sFCxbEhRdeGNu3b88ar6+vj//6r/+Kfv365Ywfe+yxh3RN66uusSGRivDKK69EJpPJGjvppJMSqia9hgwZkvW4tbU1Xn311aJfRz/yox/pUq5+AAAAAMmTl+RHXgIAAAAApI18Nz/yXQAgX5W0vmptbY1p06bFNddcE/v27cv62hlnnBHLly+PU045JZYtW5b1tdGjRx/yta2vusaGRCrC+vXrsx4PGDAgDj/88ISqSa8jjjgijjnmmKyxg1+7YtCP/OhHupSrHwAAAEDy5CX5kZcAAAAAAGkj382PfBcAyFelrK927doVl156aXzzm99s8+sPP/xwDBgwICKiJBsSra+6xoZEKsKGDRuyHg8ePDihStLv4F3ZpbgB6kf+9CNdytEPAAAAIHnykvzJSwAAAACANJHv5k++CwDko1LWV2+99Vbs3r273a+fdNJJceGFF8Ybb7wRv/nNb7K+VowNiRHWV11hQyIV4Y033sh6PHDgwIQqSb/jjz8+6/Gbb75Z9GvoR/70I13K0Q8AAAAgefKS/MlLAAAAAIA0ke/mT74LAOSjUtZXxx9/fPzHf/xHPPnkk1FfX9/mc5566qk4+uijs8b69u0bI0aMKFoN72Z91T4bEqkIb7/9dtbjfv36JVRJ+h382hz82hWDfuRPP9KlHP0AAAAAkicvyZ+8BAAAAABIE/lu/uS7AEA+0ry+2rdvX+zbt+/A46qqqhg3blysXbs2Zs6cmdc5Ro0aFbW1tUWpx/oqfzVJFwD5aG5uznrcu3fvhCpJv7q6uqzHpbgB6kf+9CNdytEPAAAAIHnykvzJSwAAAACANJHv5k++CwDkI+n11Z49e2LlypVZx5o1a2LHjh3R0tISERG1tbVx+OGHx4c+9KEYMWJEjBgxIj7wgQ/kdf7Ro0cXrVbrq/zZkEhFqq72yz3bk8Rrox/t04908doAAABAzyQTaJ/XBgAAAABIMxlm+7w2AEAhyrWGWLFiRdx///3xL//yL/HWW291+NyWlpZ46623YunSpbF06dIuXaeYGxKtr/JnQyIAAAAAAAAAAAAAAAAABdu7d298//vfj7vvvjtWrFhR9PN/8pOfjMWLF2f91sePfvSjRb8OnbMhEQAAAAAAAAAAAAAAAICCLFu2LK677rpYuXJlya7x05/+NIYOHRrvfe97Y9myZVFfXx/HHntsya5H+2xIBAAAAAAAAAAAAAAAAKBL3nzzzbjlllvivvvu6/B5J510UowYMeLAcdxxx0VdXV1ERDQ3N8frr78eK1eujK997WtZvwHxYL/61a8iIuK8886LYcOGFe8PQpfYkAgAAAAVoKWlJXbs2BEREYcffnjU1tYmXFHP1tLS0ua/AwAAAAAcTL6bLvJdAAAAKI4VK1bEpz71qXj99dfb/PrAgQPjiiuuiM9//vPR0NDQ4bkaGxvjyCOPjFtvvTWvaz/zzDOxdu3auPzyy2PkyJFdLZ1DVJ10AQAAAEDbVqxYEVOmTInTTz89DjvssDjyyCPjyCOPjMMOOyxOP/30mDJlSqxcuTLpMnuMd/djwIABB8YHDBigHwAAAABAFvluush3AQAAoLieeuqpOPPMM9vcjDhs2LD42c9+Fq+++mrcdtttnW5GjIjIZDIxZsyYnPE77rgjfvazn7X52xBff/31OPPMM+Opp54q7A9BwWxIBAAAgJRZtWpVjB07NhobG2PevHnx4osvxp49ew58fc+ePfHiiy/GvHnzYuTIkTF27NhYtWpVghV3b/oBAAAAAORLnpgu+gEAAADF95Of/CTGjRsXTU1NWeP9+/eP22+/PV5++eX4xCc+Eb169cr7nDNmzGhz/IYbbohPfOIT8fLLL8ftt98e/fv3z/p6U1NTXHTRRfGTn/yk638QCmZDIgAAAKREJpOJ2bNnx6hRo2Lp0qV5f9/SpUtj1KhRMXv27MhkMiWssGfRDwAAAAAgX/LEdNEPAAAAKI3nn38+xo8fHy0tLVnjZ511Vqxbty5uuummqK2t7dI5d+zYEbNmzcoZX7du3YF/r62tjZtuuinWrVsXZ555Ztbz9uzZE+PHj4/nn3++S9elcDYkAgAAQApkMpmYPHlyTJ8+PSesyUdLS0tMnz49Jk+e7C9JFIF+AAAAAAD5kiemi34AAABAafzxj3+Mz3zmMzmfty+77LJ45plnYuDAgQWdt6GhIWessbExhg4dmjM+cODAWLx4cVx22WVZ4y0tLfGZz3wm/vSnPxVUA13TYzYk/vjHP47zzjsvjjzyyOjTp0+ccMIJcdlll8Xvfve7pEsjhTZt2hRVVVVZR21tbRx33HFx6aWXxosvvpj1/B07dkR9fX306dMn1q5d2+Y558yZE1VVVXH11VeX44/QrehHOuXblzvvvDOqqqriyiuvbPdcP//5z6O6ujpOP/302Lt3b7n+CAAAqTJnzpyYP3/+IZ9n/vz5MWfOnCJU1LPpBwCFkJcAAAD0TPLEdNEPAAoh3wUA6Fgmk4mJEyfGb3/726zxq666Kh5++OGoq6sr6LzLli2Lbdu25YwvX7683e+pq6uLhx9+OK666qqs8d/+9rcxceJE/4OhMqhJuoBSy2Qyce2118a9994bDQ0N8elPfzoOP/zw+P/+v/8vnnvuudi8eXPBO3Dp/hoaGuJzn/tcREQ0NTXFSy+9FAsXLownnngiFi9eHGPHjo2IiMMPPzzuv//+OPfcc+Pzn/98LFu2LGpq/vL2Wr16dcycOTMGDRoUd9xxRyJ/lu5AP9Kps7586UtfiieffDIeeOCBuOSSS+Lv/u7vsr5/586dceWVV0ZdXV089NBDWb0CAOgpVq1aFTNnziza+WbOnBl/+7d/G8OHDy/aOXsS/QDgUMlLAAAAeg55YrroBwCHSr4LANC2BQsWxGOPPZY1dvbZZ8e9994bvXr1KuicmUwmxowZkzM+d+7c6N27d4ff26tXr7j33ntj48aN8dxzzx0Y/9GPfhT33XdfTJw4saCayE+3X+V+97vfjXvvvTe++MUvxne/+92cH3L/5xE6Mnjw4PjKV76SNTZ79uyYPn16/K//9b+yblof//jH4/rrr4+77rorvvGNbxwIN1taWuLyyy+PlpaW+MEPfhCHH354Of8I3Yp+pFM+fXnggQdi+PDhMXHixFizZk0ceeSRB5570003xaZNm+KOO+6ID37wg2WuHgAgHSZNmhQtLS1FO19LS0tMmjQplixZUrRz9iT6AcChkpcAAAD0HPLEdNEPAA6VfBcAINeuXbti+vTpWWPve9/74oc//GHBmxEjImbMmNHm+JQpU/L6/l69esUPf/jDGDFiRLz11lsHxqdPnx6f/exno1+/fgXXRseqky6glHbv3h1f/epX48QTT4y5c+e2+UPu/zxCV/3DP/xDRES89NJLOV+bM2dODB48OL7+9a/HihUrIiLitttuixUrVsTkyZPjnHPOKWepPYJ+pNPBfRk0aFDceeedsWXLlrjuuusOPG/RokVx7733xjnnnBNf+tKXEqkVACBpK1asiKVLlxb9vEuXLo2VK1cW/bzdnX4AUCryEgAAgO5Hnpgu+gFAqch3AYCe7oEHHsja8BcR8YMf/CCOO+64gs+5Y8eOmDVrVs74unXrunSe448/Pu6///6ssTfffDMefPDBgmujc916Q+LTTz8df/zjH+Pv//7vY9++ffH444/H7Nmz4+67744NGzYkXR4Vrq3NrP369YsHHngg9u3bF5dffnn853/+Z8yaNStOPvnkmD17dgJV9hz6kU7v7suVV14Z48aNi4ULF8YjjzwSf/rTn+Lqq6+OI444In7wgx9EVVVVgpUCACTn4DCkUs7dXekHAKUmLwEAAOg+5Inpoh8AlJp8FwDoifbt2xff+c53ssYuvPDCGDdu3CGdt6GhIWessbExhg4d2uVzXXTRRXHhhRdmjX3nO9+Jffv2FVwfHevWGxLf+T+R9OrVK4YPHx7jx4+P6dOnx3XXXRcnn3xyTJ06NeEKqUT33XdfRESceeaZbX79r//6r+Mf//EfY/Xq1XHuuedGRMSDDz4Yffv2LVuNPYl+pFN7fbn33nvjqKOOiuuvvz6uuOKKeO211+LOO++MQYMGJVEmAEAqLFu2rCLP3V3pBwClIi8BAADofuSJ6aIfAJSKfBcA6MmefPLJ2LhxY9bYoe7HWrZsWWzbti1nfPny5QWf86abbsp6vGHDhvj3f//3gs9Hx3J/pVg3snXr1ojYv6v1tNNOixdeeCE++MEPxv/9v/83rrnmmvj2t78dDQ0NWb8uPe0ymUzs2rUr6TLKrqWlJZHrbtiwIb7yla9ERERTU1O89NJL8eyzz8aAAQPiW9/6VrvfN3PmzJg/f37s3r07Jk2aFGeccUaZKs7V0tISTU1NRT9nEvSj/XMmqSt9GTBgQNxzzz0xfvz4ePLJJ2PcuHFx5ZVXJlD1fqXoBwCH5t33ZfdoeoKWlpZYtWpVyc6/atWq+POf/9zmbxQnl34AdB/yksL1pLzE5w8ACmH+gPZ5f9DTyBPTRT8Aug/5buHkuwDQsZ46fxzq+urRRx/NetzY2BjnnHNOwefLZDIxZsyYnPG5c+dG7969Cz7vxz/+8Rg5cmSsWLHiwNi//du/xcUXX1zwOelAphubOHFiJiIyffv2zbz++utZX1u9enWmuro609DQkFB1hdm5c2cmInr88cUvfrGkr/Orr77a7rWPPfbYzPr16zv8/pkzZx54/uDBgzNNTU0lrffdvvjFL+rHQfSjNA6lLx/5yEcyEZFZu3ZtWWp9RxL9cDgcDofD4XA4HA6Hw5H8IS9pn7zE4XA4HA6Hw+FwOBwOh8PhcKT5kO+2T77rcDgcDoejkKOr66tBgwZlff8///M/H9IaZvr06W3WVQzf+973ss5ZX1/fpe8/eH1VrrVoJaqObuw973lPRESMGjUq3v/+92d9bdiwYXHiiSfGxo0b409/+lMC1VEJLrjggshkMpHJZGLr1q3xrW99K7Zu3Rrjxo2LnTt3tvk9L730UnzjG9+Ik08+OaZOnRobNmyI6dOnl7ny7kk/0qmQvvTt2zfrnwAAAADdibwEAAAAAKAyyXcBAP7iD3/4Q2zevDlr7Mwzzyz4fDt27IhZs2bljK9bt67gc77bwbVt2rQptmzZUpRzk60m6QJK6eSTT46IiL/6q79q8+vvjO/evbvd56RNv3792v1A053deOONsWDBgkRrOProo2Pq1Knx5z//Ob7+9a/HrbfeGnfeeWfWc5qbm+Pyyy+PTCYTDz74YJx22mnx9NNPx7x582L8+PExduzYstc9ceLEuOOOO4p6Tv0oXHftxzvy6UualKIfAByapqamGDBgQEREbNmyJfr3759wRVBaLS0tMWDAgNizZ09Jzl9XVxdbtmyJmppu/fG/aPQDoPuQlxSuJ+UlPn8AUAjzB7TP+4OeRp6YLvoB0H3Idwsn3wWAjvXU+eNQ1le/+MUvsh4ffvjh8cEPfrDgWhoaGnLGGhsbY+jQoQWf891OOeWUOOyww7L2Xf3iF7+IcePGFeX8/EW3TkjOOeeciGh7p2xLS0ts2LAh+vfvH0cffXS5SytYVVVVj7npvVttbW3SJRzw5S9/Oe6///743ve+FzfccEPU19cf+Nqtt94aa9eujenTp8cZZ5wREREPPvhgfOQjH4mrrroqVq1aFf369StrvbW1tUX/mdGPwnX3fryjo76kSSn6AUDx9O/f332aHmH48OHx4osvluzc73nPe0py7u5KPwC6B3lJ4XpqXuLzBwCFMH9A+7w/6CnkiemiHwDdg3y3cPJdAMhfT5o/DmV9tXLlyqzHp59+evTq1augcy1btiy2bduWM758+fKCzteWXr16xemnnx7PPvvsgbEVK1bYkFgC1UkXUEoNDQ1x/vnnx4YNG+K+++7L+trs2bPjT3/6U1x88cX+z1V0Sd++fWPatGnR0tISX/va1w6MP//88/Gd73wnTj311PjKV75yYHzkyJExY8aM2LhxY0ybNi2Birs3/Uin9voCAECu0aNHV+S5uyv9AKBU5CUAAADdjzwxXfQDgFKR7wIAPdWOHTuyHg8cOLCg82QymRgzZkzO+Ny5c6N3794FnbM9B9f47t+WSPF06w2JERHf+9734phjjomJEyfGpz71qZg6dWr8zd/8TcycOTMGDRoU3/rWt5IukQp0zTXXxPvf//546KGHYuPGjdHU1BRXXHFF9OrVKx588MGcG+KMGTOisbEx5s+fH88991xCVXdf+pFOB/cFAIC2XXXVVRV57u5KPwAoJXkJAABA9yJPTBf9AKCU5LsAQE80YsSI+PSnPx0XXXRRnH/++XHqqacWdJ4ZM2a0OT5lypRDKa9Nw4cPj/PPPz8uuuii+PSnPx0jRowo+jXoARsSGxoa4sUXX4wrrrgiXnrppfjud78b69evj+uvvz5eeOGFOPbYY5MukQrUp0+fmD59euzduze++tWvxs033xwbNmyIW2+9NRobG3OeX1NTEw8++GDU1tbGlVdeGU1NTQlU3X3pRzod3BcAANo2cuTIOOuss4p+3rPOOkuYUgD9AKCU5CUAAADdizwxXfQDgFKS7wIAPdHnPve5eOSRR+KJJ56IRYsWxU033dTlc+zYsSNmzZqVM75u3bpilJjjpptuikWLFsUTTzwRjzzySHz2s58tyXV6upqkCyiHgQMHxg9+8IOky6CC1NfXRyaT6fA5kyZNikmTJh14PH/+/A6ff+qpp0Zzc3NR6utp9COdCunLO37+85+XqCoAgMp01113xahRo6KlpaUo56utre10TUz79AOAQslLAAAAeh55YrroBwCFku8CAJRGQ0NDzlhjY2MMHTo0gWoolm7/GxIBAAAg7YYPHx633XZb0c532223xamnnlq08/U0+gEAAAAA5EuemC76AQAAAOmxbNmy2LZtW8748uXLE6iGYrIhEQAAAFJg2rRpcf311x/yeSZNmhTTpk0rQkU9m34AAAAAAPmSJ6aLfgAAAEDyMplMjBkzJmd87ty50bt37wQqophsSAQAAIAUqKqqinnz5sWsWbOitra2y99fW1sbs2bNiu9+97tRVVVVggp7Fv0AAAAAAPIlT0wX/QAAAIDkzZgxo83xKVOmlLkSSsGGRAAAAEiJqqqquOWWW+LFF1+Ms846K+/vO+uss+Kll16KW265xV+OKCL9AAAAAADyJU9MF/0AAACA5OzYsSNmzZqVM75u3boEqqEUapIuAAAAAMg2fPjwWLJkSaxcuTLuv//+WLZsWaxcuTL27NkTERF1dXUxfPjwGD16dFx11VUxYsSIhCvu3vQDAAAAAMiXPDFd9AMAAADKr6GhIWessbExhg4dmkA1lIINiQAAAJBSI0aMiLlz50ZExJ///Of4q7/6q4iI2LJlS7znPe9JsLKe6d392Lt3b2zfvj0iIo444oioqRGxAAAAAAB/Id9NF/kuAAAAlMeyZcti27ZtOePLly9PoBpKRZoCAAAAFeDdfyHCX45IXk1NTbzvfe9LugwAAAAAoALId9NFvgsAAAClkclkYsyYMTnjc+fOjd69eydQEaVSnXQBAAAAAAAAAAAAAAAAAFSuGTNmtDk+ZcqUMldCqdmQCAAAAAAAAAAAAAAAAEBBduzYEbNmzcoZX7duXQLVUGo2JAIAAAAAAAAAAAAAAABQkIaGhpyxxsbGGDp0aALVUGo2JFKRWltbky4htZJ4bfSjffqRLl4bAAAA6JlkAu3z2gAAAAAAaSbDbJ/XBgAoRCnWEL/61a9i27ZtOePLly8v+rVKyfoqfzYkUhHq6uqyHu/ZsyehStKvubk563GfPn2Kfg39yJ9+pEs5+gEAAAAkT16SP3kJAAAAAJAm8t38yXcBgHyUen2VyWTihhtuyBmfO3du9O7du6jXKjXrq/zZkEhFOPhNvGvXroQqSb+DX5tS3AD1I3/6kS7l6AcAAACQPHlJ/uQlAAAAAECayHfzJ98FAPJR6vXV1q1b49e//nXW2Hvf+96YMmVKUa9TDtZX+bMhkYpw1FFHZT3+3e9+l1Al6ffaa69lPT7yyCOLfg39yJ9+pEs5+gEAAAAkT16SP3kJAAAAAJAm8t38yXcBgHyUen01YMCAWLt2bcycOTPq6uqif//+sWrVqqJeo1ysr/JnQyIVYfDgwVmPN2zYkFAl6bd+/fqsx0OGDCn6NfQjf/qRLuXoBwAAAJA8eUn+5CUAAAAAQJrId/Mn3wUA8lGO9VXfvn3jq1/9aqxZsyYeeuihOP7444t+jXKwvsqfDYlUhIPfxFu2bInt27cnVE16bd++PbZu3Zo1VooboH7kRz/SpVz9AAAAAJInL8mPvAQAAAAASBv5bn7kuwBAvsq5vmpoaIhLLrmkJOcuNeurrrEhkYpw4oknRlVVVdbYwTuPyX1Nqqur44QTTij6dfQjP/qRLuXqBwAAAJA8eUl+5CUAAAAAQNrId/Mj3wUA8mV9lR/rq66xIZGKUFdXF4MGDcoaW7x4cULVpNczzzyT9XjQoEFRV1dX9OvoR370I13K1Q8AAAAgefKS/MhLAAAAAIC0ke/mR74LAOTL+io/1lddY0MiFeOCCy7Ierxw4cKEKkmvg1+Tg1+zYtKPzulHupSzHwAAAEDy5CWdk5cAAAAAAGkk3+2cfBcA6Arrq85ZX3WNDYlUjAkTJmQ9fumll+KVV15JqJr02bhxY7z88stZYwe/ZsWkHx3Tj3Qpdz8AAACA5MlLOiYvAQAAAADSSr7bMfkuANBV1lcds77qOhsSqRgf+9jH4uijj84amzdvXkLVpM9dd92V9fiYY46JsWPHlux6+tEx/UiXcvcDAAAASJ68pGPyEgAAAAAgreS7HZPvAgBdZX3VMeurrrMhkYpRU1MT48ePzxqbN29e/PKXv0yoovRYvXp1zmRwySWXRE1NTcmuqR/t0490SaIfAAAAQPLkJe2TlwAAAAAAaSbfbZ98FwAohPVV+6yvCmNDIhVl6tSpUVdXd+Dxvn374vrrr4/W1tYEq0pWa2trXH/99bFv374DY3V1dTF16tSSX1s/culHuiTZDwAAACB58pJc8hIAAAAAoBLId3PJdwGAQ2F9lcv6qnA2JFJRGhoa4uabb84aW7JkSVx77bU98ibY2toa1157bSxdujRrfNq0adHQ0FDy6+tHNv1Il6T7AQAAACRPXpJNXgIAAAAAVAr5bjb5LgBwqKyvsllfHZqqTCaTSboI6Ipdu3bFKaecEps3b84anzhxYtx9991RXd0z9tm+c/NbsGBB1nh9fX2sXbs2+vbtW5Y69GM//UiXtPQDgK5ramqKww47LCIidu7cGf3790+4IkgP7w8AKIy8ZD95SS7rKwAKYf6A9nl/QPu8PwCgMPLd/eS7uayvACiE+cP66h3WV4euZ/yk0K3069cv7r333qipqckaX7BgQZx99tmxevXqhCorn9WrV8fZZ5+dc/OrqamJe+65p6w3P/3Qj7RJUz8AAACA5MlL5CUAAAAAQGWS78p3AYDisr6yvioWGxKpSOeff348+uijOTfBpUuXRmNjY9x4442xcePGhKornY0bN8aNN94YjY2NOb8WtqamJh599NE4//zzy16XfuhHGqS1HwAAAEDy5CXyEgAAAACgMsl35bsAQHFZX1lfFUNVJpPJJF0EFOrHP/5xXHrppbF37942v37aaafFhAkT4rzzzoshQ4bEEUccUeYKD8327dtj/fr18cwzz8TChQvj5ZdfbvN579z8Lr744jJXmE0/9tOP8qi0fgCQn6ampjjssMMiImLnzp3Rv3//hCuC9PD+AIBDJy/ZT16yn/UVAIUwf0D7vD+gfd4fAHDo5Lv7yXf3s74CoBDmj2zWV/tZXxXGhkQq3tNPPx1f+MIXYtOmTZ0+95hjjokhQ4bE8ccfH/369Yu6urqork7HLwptbW2N5ubm2LVrV7z22muxfv362Lp1a6ffV19fH/fcc09qdmLrh36UQnfpBwCd84Ef2uf9AQDFIS+Rl7zD+gqAQpg/oH3eH9A+7w8AKA75rnz3HdZXABTC/JHL+sr6qlA2JNIt7N69O2bPnh1z5syJ5ubmpMspi7q6upg2bVrccsst0bdv36TLyaIf+pG0NPcDgI75wA/t8/4AgOKRl8hLIqyvACiM+QPa5/0B7fP+AIDike/KdyOsrwAojPmjbdZX1leFsCGRbmXjxo1x++23x2OPPRbbtm1LupySOOaYY+KSSy6JqVOnRkNDQ9LldEg/0kU/AKgEPvBD+7w/AKD45CU9m/UVAIUwf0D7vD+gfd4fAFB88t2ezfoKgEKYPzpmfUVX2JBIt7R3795YsmRJLFy4MBYtWhSbNm2KSv1Rr6qqivr6+rjgggtiwoQJMXbs2KipqUm6rC7Rj3TRDwDSzAd+aJ/3BwCUjrykZ7K+AqAQ5g9on/cHtM/7AwBKR77bM1lfAVAI80d+rK/Ihw2J9AjNzc3x6quvxvr162P9+vXx5ptvxttvvx1vv/120qVl6dOnT/Tp0yeOPPLIGDJkSAwZMiROOOGEqKurS7q0otKPdNEPANLEB35on/cHAJSPvKRnsL4CoBDmD2if9we0z/sDAMpHvtszWF8BUAjzR2Gsr2iLDYkAAEBq+MAP7fP+AAAoLusrAAph/oD2eX9A+7w/AACKy/oKgEKYP6B4qpMuAAAAAAAAAAAAAAAAAABIPxsSAQAAAAAAAAAAAAAAAIBO2ZAIAAAAAAAAAAAAAAAAAHTKhkQAAAAAAAAAAAAAAAAAoFM2JAIAAAAAAAAAAAAAAAAAnbIhEQAAAAAAAAAAAAAAAADolA2JAAAAAAAAAAAAAAAAAECnbEgEAAAAAAAAAAAAAAAAADplQyIAAAAAAAAAAAAAAAAA0CkbEgEAAAAAAAAAAAAAAACATtmQCAAAAAAAAAAAAAAAAAB0yoZEAAAAAAAAAAAAAAAAAKBTNiQCAAAAAAAAAAAAAAAAAJ2yIREAAAAAAAAAAAAAAAAA6JQNiQAAAAAAAAAAAAAAAABAp2xIBAAAAAAAAAAAAAAAAAA6ZUMiAAAAAAAAAAAAAAAAANApGxIBAAAAAAAAAAAAAAAAgE7ZkAgAAAAAAAAAAAAAAAAAdKom6QKgHJqbm+OVV16J9evXx4YNG+KNN96It99+O5qbm5MuLUtdXV306dMnjjrqqBg8eHAMGTIkTjzxxKirq0u6tKLSj3TRDwCofObzdClVP1paWg78+4033hi1tbWHdL6e0g8AAAAASDP5brrIdwEAAACyya9oiw2JdEt79+6N5557LhYuXBiLFi2KzZs3RyaTSbqsglRVVcWgQYPiggsuiAkTJsTHPvaxqKmprLeufqSLfgBA5TOfp0sS/ViwYEFJztsd+gEAAAAAaSbfTRf5LgAAAEA2+RX5qMpU6k8FtGHDhg3x7W9/Ox577LHYtm1b0uWUxNFHHx3jx4+PqVOnRkNDQ9LldEg/0kU/AKgETU1Ncdhhh0VExM6dO6N///4JV5Qu5vN00Q8AgMrm8wcAhTB/QPu8PzomT0wX/QAAqGw+fwBQCPNHx+QldIUNiXQLu3btitmzZ8ecOXNiz549SZdTFnV1dXHzzTfHLbfcEv369Uu6nCz6oR9JS3M/AOiYD/xtM5+naz7Xj3T1AwCgUD5/AFAI8we0z/ujbfLEdOWJ+pGufgAAFMrnDwAKYf5om7xEXlIIGxKpeE8//XRcc801sXnz5k6fO2DAgBg8eHAMHDgw+vXrF717947q6uoyVNm51tbW2LNnT+zatSt+97vfxYYNG2LLli2dfl99fX3cc889cf7555ehys7ph36UQnfpBwCd84E/l/k8XfO5fqSrHwAAh8LnDwAKYf6A9nl/5JInpitP1I909QMA4FD4/AFAIcwfubpbXrJ69er4/e9/Hy0tLfKSErMhkYr24x//OC699NLYu3dvm1//8Ic/HBMmTIhzzz03hgwZEkcccUSZKzw027dvj/Xr18fixYvj0UcfjZdffrnN59XU1MSjjz4aF198cZkrzKYf++lHeVRaPwDIjw/82czn+6VlPteP/dLSDwCAQ+XzBwCFMH9A+7w/sskT90tLnqgf+6WlHwAAh8rnDwAKYf7I1p3yktbW1vjyl78cc+bMiccffzwuvvhieUmJ2ZBIxWrv5terV6+YPHlyTJ48OU488cSEqiuNjRs3xl133RXz5s2Lffv2ZX0t6ZugfuhH0tLcDwDy5wP/X5jP0zWf60e6+gEAUAw+fwBQCPMHtM/74y/kienKE/UjXf0AACgGnz8AKIT54y+6U16ye/fuuPzyy+NHP/pRRET8/ve/j2OPPTbnefKS4rIhkYr09NNPxyc/+cmcm9/YsWNj/vz5MWzYsIQqK49f/vKXcf3118eSJUuyxmtqauKnP/1p2X9drH7oR5qkrR8AdI0P/PuZz9M1n+tHuvoBAFAsPn8AUAjzB7TP+2M/eWK68kT9SFc/AACKxecPAAph/tivO+UlW7ZsiXHjxsULL7wQERH19fXx6quvdvg98pLisCGRirNr16445ZRTYvPmzVnjEydOjLvvvjuqq6sTqqy8Wltb49prr40FCxZkjdfX18fatWujb9++ZalDP/bTj3RJSz8A6Dof+M3n70jLfK4f+6WlHwAAxeTzBwCFMH9A+7w/5InvSEueqB/7paUfAADF5PMHAIUwf3SvvGTNmjXxyU9+MuvPctlll8W//uu/dvq98pJDVzk/KfD/zJ49u1vc/A5VdXV13H333TFx4sSs8U2bNsXs2bPLVod+7Kcf6ZKWfgBAIczn+6VlPteP/dLSDwAAAABIM3nifmnJE/Vjv7T0AwAAAEhed8lLFi9eHGPGjMn5s4wePTqv75eXHDq/IZGKsmHDhhg2bFg0NzcfGBs7dmw8++yzFXXzK6bW1tY4++yzY+nSpQfG6urqYs2aNdHQ0FDSa+tHLv1IlyT7AUBhevr/gch8nsv6Kl2srwCA7qSnf/4AoDDmD2hfT39/yBNzyXfTRb4LAHQnPf3zBwCF6enzR3fJS+6777647rrrYu/evTlf++///u8YNWpU3ueSlxSucn5iICK+/e1vZ938evXqFfPnz6+om1+xVVdXx/z586NXr14Hxpqbm+P2228v+bX1I5d+pEuS/QCAQpjPc1lfpYv1FQAAAAC0TZ6YS76bLvJdAAAA6NkqPS9pbW2NadOmxcSJE9vcjNi3b98YMWJEl84pLylcZfzUQETs3bs3HnvssayxyZMnx7BhwxKqKD1OPfXUmDx5ctbY448/3uZNtlj0o336kS5J9AMACmE+b5/1VbpYXwEAAABANnli++S76SLfBQAAgJ6p0vOS3bt3x6WXXhrf/OY3233OqFGjora2tsvnlpcUxoZEKsZzzz0X27Ztyxo7+E3fk02aNCnr8datW2PJkiUlu55+dEw/0qXc/QCAQpjPO2Z9lS7WVwAAAADwF/LEjsl300W+CwAAAD1PJeclW7ZsibPPPjtnQ+XBRo8eXfA15CVdZ0MiFWPhwoVZjz/84Q/HiSeemFA16dPQ0BCnnXZa1tjBr1kx6UfH9CNdyt0PACiE+bxj1lfpYn0FAAAAAH8hT+yYfDdd5LsAAADQ81RqXrJmzZo444wz4oUXXsgar67O3Q53KBsS5SVdZ0MiFWPRokVZjydMmJBQJel18Gty8GtWTPrROf1Il3L2AwAKYT7vnPVVulhfAQAAAMB+8sTOyXfTRb4LAAAAPUsl5iXPPPNMjBkzJjZv3pw1/p73vCduv/32nOd/9KMfPaTryUu6xoZEKkJzc3POTeTcc89NqJr0Ou+887Ieb968OZqbm4t+Hf3Ij36kS7n6AQCFMJ/nx/oqXayvAAAAAECemC/5brrIdwEAAKDnqMS8ZMGCBXHhhRfG9u3bs8br6+vjv/7rv6Jfv34548cee+whXVNe0jU2JFIRXnnllchkMlljJ510UkLVpNeQIUOyHre2tsarr75a9OvoR370I13K1Q8AKIT5PD/WV+lifQUAAAAA8sR8yXfTRb4LAAAAPUcl5SWtra0xbdq0uOaaa2Lfvn1ZXzvjjDNi+fLlccopp8SyZcuyvjZ69OhDvra8pGtsSKQirF+/PuvxgAED4vDDD0+omvQ64ogj4phjjskaO/i1Kwb9yI9+pEu5+gEAhTCf58f6Kl2srwAAAABAnpgv+W66yHcBAACg56iUvGTXrl1x6aWXxje/+c02v/7www/HgAEDIiJKsiFRXtI1NiRSETZs2JD1ePDgwQlVkn4H78ouxQ1QP/KnH+lSjn4AQCHM5/mzvkoX6ysAAAAAejp5Yv7ku+ki3wUAAICeoVLykrfeeit2797d7tdPOumkuPDCC+ONN96I3/zmN1lfK8aGxAh5SVfYkEhFeOONN7IeDxw4MKFK0u/444/Pevzmm28W/Rr6kT/9SJdy9AMACmE+z5/1VbpYXwEAAADQ08kT8yffTRf5LgAAAPQMlZKXHH/88fEf//Ef8eSTT0Z9fX2bz3nqqafi6KOPzhrr27dvjBgxomg1vJu8pH02JFIR3n777azH/fr1S6iS9Dv4tTn4tSsG/ciffqRLOfoBAIUwn+fP+ipdrK8AAAAA6OnkifmT76aLfBcAAAB6hjTnJfv27Yt9+/YdeFxVVRXjxo2LtWvXxsyZM/M6x6hRo6K2trYo9chL8leTdAGQj+bm5qzHvXv3TqiS9Kurq8t6XIoboH7kTz/SpRz9AIBCmM/zZ32VLtZXAAAAAPR08sT8yXfTRb4LAAAAPUPSecmePXti5cqVWceaNWtix44d0dLSEhERtbW1cfjhh8eHPvShGDFiRIwYMSI+8IEP5HX+0aNHF61WeUn+bEikIlVX++We7UnitdGP9ulHunhtAKgU5qz2WV+li9cGAAAAALLJzNon300Xrw0AAAD0TOXKBFasWBH3339//Mu//Eu89dZbHT63paUl3nrrrVi6dGksXbq0S9cp5oZEeUn+bEgEAAAAAAAAAAAAAAAAoGB79+6N73//+3H33XfHihUrin7+T37yk7F48eKs3/r40Y9+tOjXoXM2JAIAAAAAAAAAAAAAAABQkGXLlsV1110XK1euLNk1fvrTn8bQoUPjve99byxbtizq6+vj2GOPLdn1aJ8NiQAAAAAAAAAAAAAAAAB0yZtvvhm33HJL3HfffR0+76STTooRI0YcOI477rioq6uLiIjm5uZ4/fXXY+XKlfG1r30t6zcgHuxXv/pVREScd955MWzYsOL9QegSGxIBAAAAAAAAIA8tLS1t/jsAAAAAAOkm3y2+FStWxKc+9al4/fXX2/z6wIED44orrojPf/7z0dDQ0OG5Ghsb48gjj4xbb701r2s/88wzsXbt2rj88stj5MiRXS2dQ1SddAEAAAAAAAAAkFYrVqyIKVOmxOmnnx4DBgw4MD5gwIA4/fTTY8qUKbFy5coEKwQAAAAAoC3y3dJ56qmn4swzz2xzM+KwYcPiZz/7Wbz66qtx2223dboZMSIik8nEmDFjcsbvuOOO+NnPftbmb0N8/fXX48wzz4ynnnqqsD8EBbMhEQAAAAAAAAAOsmrVqhg7dmw0NjbGvHnz4sUXX4w9e/Yc+PqePXvixRdfjHnz5sXIkSNj7NixsWrVqgQrBgAAAAAgQr5baj/5yU9i3Lhx0dTUlDXev3//uP322+Pll1+OT3ziE9GrV6+8zzljxow2x2+44Yb4xCc+ES+//HLcfvvt0b9//6yvNzU1xUUXXRQ/+clPuv4HoWA2JAIAAAAAAADA/5PJZGL27NkxatSoWLp0ad7ft3Tp0hg1alTMnj07MplMCSsEAAAAAKAt8t3Se/7552P8+PHR0tKSNX7WWWfFunXr4qabbora2tounXPHjh0xa9asnPF169Yd+Pfa2tq46aabYt26dXHmmWdmPW/Pnj0xfvz4eP7557t0XQpnQyIAAAAAAAAAxP6/rDJ58uSYPn16zl+myEdLS0tMnz49Jk+e7C+tAAAAAACUkXy39P74xz/GZz7zmZzX97LLLotnnnkmBg4cWNB5GxoacsYaGxtj6NChOeMDBw6MxYsXx2WXXZY13tLSEp/5zGfiT3/6U0E10DXdekPiAw88EFVVVR0ef/M3f5N0maTQpk2bcn5Wamtr47jjjotLL700Xnzxxazn79ixI+rr66NPnz6xdu3aNs85Z86cqKqqiquvvrocf4RuRT/SKd++3HnnnVFVVRVXXnllu+f6+c9/HtXV1XH66afH3r17y/VHAIAez3yeLvoBAAAAyZszZ07Mnz//kM8zf/78mDNnThEqAmibPDFd9AMAAACSJ98trUwmExMnTozf/va3WeNXXXVVPPzww1FXV1fQeZctWxbbtm3LGV++fHm731NXVxcPP/xwXHXVVVnjv/3tb2PixIk2lJZBTdIFlNLIkSPjn/7pn9r82o9+9KNYs2ZNXHDBBWWuikrS0NAQn/vc5yIioqmpKV566aVYuHBhPPHEE7F48eIYO3ZsREQcfvjhcf/998e5554bn//852PZsmVRU/OXt9fq1atj5syZMWjQoLjjjjsS+bN0B/qRTp315Utf+lI8+eST8cADD8Qll1wSf/d3f5f1/Tt37owrr7wy6urq4qGHHsrqFQBQHubzdNEPAAAASMaqVati5syZRTvfzJkz42//9m9j+PDhRTsnwMHkiemiHwAAAJAM+W7pLViwIB577LGssbPPPjvuvffe6NWrV0HnzGQyMWbMmJzxuXPnRu/evTv83l69esW9994bGzdujOeee+7A+I9+9KO47777YuLEiQXVRH66dWo1cuTIGDlyZM74nj174q677oqampr4/Oc/X/7CqBiDBw+Or3zlK1ljs2fPjunTp8f/+l//K+um9fGPfzyuv/76uOuuu+Ib3/jGgcmspaUlLr/88mhpaYkf/OAHcfjhh5fzj9Ct6Ec65dOXBx54IIYPHx4TJ06MNWvWxJFHHnnguTfddFNs2rQp7rjjjvjgBz9Y5uoBgAjzedroBwAAACRj0qRJ0dLSUrTztbS0xKRJk2LJkiVFOyfAweSJ6aIfAAAAkAz5bmnt2rUrpk+fnjX2vve9L374wx8WvBkxImLGjBltjk+ZMiWv7+/Vq1f88Ic/jBEjRsRbb711YHz69Onx2c9+Nvr161dwbXSsOukCkvDEE0/Em2++GZ/61KdiwIABSZdDhfmHf/iHiIh46aWXcr42Z86cGDx4cHz961+PFStWRETEbbfdFitWrIjJkyfHOeecU85SewT9SKeD+zJo0KC48847Y8uWLXHdddcdeN6iRYvi3nvvjXPOOSe+9KUvJVIrANA283m66AcAAACU1ooVK2Lp0qVFP+/SpUtj5cqVRT8vQEfkiemiHwAAAFBa8t3Se+CBB7I2/EVE/OAHP4jjjjuu4HPu2LEjZs2alTO+bt26Lp3n+OOPj/vvvz9r7M0334wHH3yw4NroXI/ckHjfffdFRMTVV1+dcCVUspqa3F8w2q9fv3jggQdi3759cfnll8d//ud/xqxZs+Lkk0+O2bNnJ1Blz6Ef6fTuvlx55ZUxbty4WLhwYTzyyCPxpz/9Ka6++uo44ogj4gc/+EFUVVUlWCkA0B7zebroBwAAAJTGwX9ZoVLODdAReWK66AcAAACUhny3tPbt2xff+c53ssYuvPDCGDdu3CGdt6GhIWessbExhg4d2uVzXXTRRXHhhRdmjX3nO9+Jffv2FVwfHetxGxI3b94c/+f//J84/vjj4xOf+ETS5VCB3tnQeuaZZ7b59b/+67+Of/zHf4zVq1fHueeeGxERDz74YPTt27dsNfYk+pFO7fXl3nvvjaOOOiquv/76uOKKK+K1116LO++8MwYNGpREmQBAB8zn6aIfAAAAUFrLli2ryHMDtEWemC76AQAAAKUl3y2tJ598MjZu3Jg1NnXq1EM657Jly2Lbtm0548uXLy/4nDfddFPW4w0bNsS///u/F3w+Opb7K8W6uR/84AfR2toaV1xxRfTq1Svpcrosk8nErl27ki6j7FpaWhK57oYNG+IrX/lKREQ0NTXFSy+9FM8++2wMGDAgvvWtb7X7fTNnzoz58+fH7t27Y9KkSXHGGWeUqeJcLS0t0dTUVPRzJkE/2j9nkrrSlwEDBsQ999wT48ePjyeffDLGjRsXV155ZQJV71eKfgBwaN59X+5J92jzeeGsr7p/PwAASqWnfv4AIFdLS0usWrWqZOdftWpV/PnPf876zVjQHfXU9ZU8sXDy3e7fDwCAUumpnz8AyCXf7dyh5iWPPvpo1uPGxsY455xzCj5fJpOJMWPG5IzPnTs3evfuXfB5P/7xj8fIkSNjxYoVB8b+7d/+LS6++OKCz0kHMj3Ivn37Mh/4wAcyVVVVmVdeeSXpcgqyc+fOTET0+OOLX/xiSV/nV199td1rH3vssZn169d3+P0zZ8488PzBgwdnmpqaSlrvu33xi1/Uj4PoR2kcSl8+8pGPZCIis3bt2rLU+o4k+uFwOBwORyGH+bx91ldt60n9cDgcDofD4XA4HA6Hw+FwONJ8yBPbJ99tW0/qh8PhcDgcDofD4XA4HI7kj67mJYMGDcr6/n/+538+pExi+vTpbdZVDN/73veyzllfX9+l7z84LylXtlSJqqMHWbx4cfz2t7+Nj3/843HCCSckXQ4V4IILLohMJhOZTCa2bt0a3/rWt2Lr1q0xbty42LlzZ5vf89JLL8U3vvGNOPnkk2Pq1KmxYcOGmD59epkr7570I50K6Uvfvn2z/gkAJMt8ni76AQAAAADkS56YLvoBAAAAdCd/+MMfYvPmzVljZ555ZsHn27FjR8yaNStnfN26dQWf890Orm3Tpk2xZcuWopybbJX7O0MLcN9990VExNVXX51wJYXr169fuwFld3bjjTfGggULEq3h6KOPjqlTp8af//zn+PrXvx633npr3HnnnVnPaW5ujssvvzwymUw8+OCDcdppp8XTTz8d8+bNi/Hjx8fYsWPLXvfEiRPjjjvuKOo59aNw3bUf78inL2lSin4AcGiamppiwIABERGxZcuW6N+/f8IVlYf5vHDWV+lifQUAVJKe+vkDgFwtLS0xYMCA2LNnT0nOX1dXF1u2bImamh71n+fpgXrq+kqeWDj5brrIdwGAStJTP38AkEu+27lDyUt+8YtfZD0+/PDD44Mf/GDBtTQ0NOSMNTY2xtChQws+57udcsopcdhhh2Xtu/rFL34R48aNK8r5+YvKfUd00ZtvvhlPPvlkvO9974uLL7446XIKVlVV1SMXzbW1tUmXcMCXv/zluP/+++N73/te3HDDDVFfX3/ga7feemusXbs2pk+fHmeccUZERDz44IPxkY98JK666qpYtWpV9OvXr6z11tbWFv1nRj8K19378Y6O+pImpegHAMXTv3//HnOfNp8XzvoqXayvAIBK1ZM+fwDQtuHDh8eLL75YsnO/5z3vKcm5Ia160vpKnlg4+W66yHcBgErVkz5/ANA2+W7HDiUvWblyZdbj008/PXr16lXQuZYtWxbbtm3LGV++fHlB52tLr1694vTTT49nn332wNiKFStsSCyB6qQLKJeHH3449uzZE5/73Oeirq4u6XKoYH379o1p06ZFS0tLfO1rXzsw/vzzz8d3vvOdOPXUU+MrX/nKgfGRI0fGjBkzYuPGjTFt2rQEKu7e9COd2usLAFA5zOfpoh8AAABQWqNHj67IcwO0RZ6YLvoBAAAApSXfLZ0dO3ZkPR44cGBB58lkMjFmzJic8blz50bv3r0LOmd7Dq7x3b8tkeLpMRsSv//970dExNVXX51wJXQH11xzTbz//e+Phx56KDZu3BhNTU1xxRVXRK9eveLBBx/MuSHOmDEjGhsbY/78+fHcc88lVHX3pR/pdHBfAIDKYz5PF/0AAACA0rnqqqsq8twA7ZEnpot+AAAAQOnId0tnxIgR8elPfzouuuiiOP/88+PUU08t6DwzZsxoc3zKlCmHUl6bhg8fHueff35cdNFF8elPfzpGjBhR9GvQQzYkvvDCC/HLX/4yPvKRjxT8ww/v1qdPn5g+fXrs3bs3vvrVr8bNN98cGzZsiFtvvTUaGxtznl9TUxMPPvhg1NbWxpVXXhlNTU0JVN196Uc6HdwXAKDymM/TRT8AAACgdEaOHBlnnXVW0c971lln+csOQCLkiemiHwAAAFA68t3S+dznPhePPPJIPPHEE7Fo0aK46aabunyOHTt2xKxZs3LG161bV4wSc9x0002xaNGieOKJJ+KRRx6Jz372syW5Tk9Xk3QB5fCRj3wkMplM0mVQQerr6zv9mZk0aVJMmjTpwOP58+d3+PxTTz01mpubi1JfT6Mf6VRIX97x85//vERVAQBdYT5PF/0AAACAZN11110xatSoaGlpKcr5amtrO/1vVgCFkiemi34AAABAsuS76dXQ0JAz1tjYGEOHDk2gGoqlR/yGRAAAAAAAAADoyPDhw+O2224r2vluu+22OPXUU4t2PgAAAAAA2ibfTadly5bFtm3bcsaXL1+eQDUUkw2JAAAAAAAAABAR06ZNi+uvv/6QzzNp0qSYNm1aESoCAAAAACAf8t10yWQyMWbMmJzxuXPnRu/evROoiGKyIREAAAAAAAAAIqKqqirmzZsXs2bNitra2i5/f21tbcyaNSu++93vRlVVVQkqBAAAAACgLfLddJkxY0ab41OmTClzJZSCDYkAAAAAAAAA8P9UVVXFLbfcEi+++GKcddZZeX/fWWedFS+99FLccsst/rIKAAAAAEAC5LvpsGPHjpg1a1bO+Lp16xKohlKoSboAAAAAAAAAAEib4cOHx5IlS2LlypVx//33x7Jly2LlypWxZ8+eiIioq6uL4cOHx+jRo+Oqq66KESNGJFwxAAAAAAAR8t2kNTQ05Iw1NjbG0KFDE6iGUrAhEQAAAAAAAADaMWLEiJg7d25EROzduze2b98eERFHHHFE1NT4T+4AAAAAAGkl3y2/ZcuWxbZt23LGly9fnkA1lIp3DwAAAAAAAADkoaamJt73vvclXQYAAAAAAF0k3y29TCYTY8aMyRmfO3du9O7dO4GKKJXqpAsAAAAAAAAAAAAAAAAAoHLNmDGjzfEpU6aUuRJKzYZEAAAAAAAAAAAAAAAAAAqyY8eOmDVrVs74unXrEqiGUrMhEQAAAAAAAAAAAAAAAICCNDQ05Iw1NjbG0KFDE6iGUrMhkYrU2tqadAmplcRrox/t04908doAUCnMWe2zvkoXrw0AAAAAZJOZtU++my5eGwAAAOiZSpEJ/OpXv4pt27bljC9fvrzo1yoleUn+bEikItTV1WU93rNnT0KVpF9zc3PW4z59+hT9GvqRP/1Il3L0AwAKYT7Pn/VVulhfAQAAANDTyRPzJ99NF/kuAAAA9AylzksymUzccMMNOeNz586N3r17F/VapSYvyZ8NiVSEg9/Eu3btSqiS9Dv4tSnFDVA/8qcf6VKOfgBAIczn+bO+ShfrKwAAAAB6Onli/uS76SLfBQAAgJ6h1HnJ1q1b49e//nXW2Hvf+96YMmVKUa9TDvKS/NmQSEU46qijsh7/7ne/S6iS9HvttdeyHh955JFFv4Z+5E8/0qUc/QCAQpjP82d9lS7WVwAAAAD0dPLE/Ml300W+CwAAAD1DqfOSAQMGxNq1a2PmzJlRV1cX/fv3j1WrVhX1GuUiL8mfDYlUhMGDB2c93rBhQ0KVpN/69euzHg8ZMqTo19CP/OlHupSjHwBQCPN5/qyv0sX6CgAAAICeTp6YP/luush3AQAAoGcoR17St2/f+OpXvxpr1qyJhx56KI4//viiX6Mc5CX5syGRinDwm3jLli2xffv2hKpJr+3bt8fWrVuzxkpxA9SP/OhHupSrHwBQCPN5fqyv0sX6CgAAAADkifmS76aLfBcAAAB6jnLmJQ0NDXHJJZeU5NylJi/pGhsSqQgnnnhiVFVVZY0dvPOY3Nekuro6TjjhhKJfRz/yox/pUq5+AEAhzOf5sb5KF+srAAAAAJAn5ku+my7yXQAAAOg55CX5kZd0jQ2JVIS6uroYNGhQ1tjixYsTqia9nnnmmazHgwYNirq6uqJfRz/yox/pUq5+AEAhzOf5sb5KF+srAAAAAJAn5ku+my7yXQAAAOg55CX5kZd0jQ2JVIwLLrgg6/HChQsTqiS9Dn5NDn7Nikk/Oqcf6VLOfgBAIcznnbO+ShfrKwAAAADYT57YOfluush3AQAAoGeRl3ROXtI1NiRSMSZMmJD1+KWXXopXXnkloWrSZ+PGjfHyyy9njR38mhWTfnRMP9Kl3P0AgEKYzztmfZUu1lcAAAAA8BfyxI7Jd9NFvgsAAAA9j7ykY/KSrrMhkYrxsY99LI4++uissXnz5iVUTfrcddddWY+POeaYGDt2bMmupx8d0490KXc/AKAQ5vOOWV+li/UVAAAAAPyFPLFj8t10ke8CAABAzyMv6Zi8pOtsSKRi1NTUxPjx47PG5s2bF7/85S8Tqig9Vq9enTMZXHLJJVFTU1Oya+pH+/QjXZLoBwAUwnzePuurdLG+AgAAAIBs8sT2yXfTRb4LAAAAPZO8pH3yksJUZTKZTNJFQL42btwYH/rQh6K5ufnA2NixY+PZZ5+N6uqeub+2tbU1zj777Fi6dOmBsbq6ulizZk00NDSU9Nr6kUs/0iXJfgBQmKampjjssMMiImLnzp3Rv3//hCsqL/N5LuurdLG+AgC6k57++QMAoNh6+vpKnphLvpsu8l0AoDvp6Z8/AKAQ8pJc8pLC9cyfGCpWQ0ND3HzzzVljS5YsiWuvvTZaW1sTqio5ra2tce2112bd/CIipk2bVpabn35k0490SbofAFAI83m2pOdz/ciWdD8AAAAAIM3kidmSzhP1I1vS/QAAAACSJy/JJi85NH5DIhVn165dccopp8TmzZuzxidOnBh33313j9mZ/c7Nb8GCBVnj9fX1sXbt2ujbt29Z6tCP/fQjXdLSDwC6zv/Bznz+jrTM5/qxX1r6AQBQTD5/AAAUl/WVPPEdackT9WO/tPQDAKCYfP4AgMLIS/aTlxy6nvGTQrfSr1+/uPfee6OmpiZrfMGCBXH22WfH6tWrE6qsfFavXh1nn312zs2vpqYm7rnnnrLe/PRDP9ImTf0AgEKYz9M1n+tHuvoBAAAAAGkmT0xXnqgf6eoHAAAAkDx5ibykWGxIpCKdf/758eijj+bcBJcuXRqNjY1x4403xsaNGxOqrnQ2btwYN954YzQ2Nub8Wtiampp49NFH4/zzzy97XfqhH2mQ1n4AQCHM5+maz/UjXf0AAAAAgDSTJ6YrT9SPdPUDAAAASJ68RF5SDFWZTCaTdBFQqB//+Mdx6aWXxt69e9v8+mmnnRYTJkyI8847L4YMGRJHHHFEmSs8NNu3b4/169fHM888EwsXLoyXX365zee9c/O7+OKLy1xhNv3YTz/Ko9L6AUB+mpqa4rDDDouIiJ07d0b//v0TrihZ5vP90jKf68d+aekHAMCh8vkDAKC4rK+yyRP3S0ueqB/7paUfAACHyucPADh08pL95CWFsSGRivf000/HF77whdi0aVOnzz3mmGNiyJAhcfzxx0e/fv2irq4uqqvT8YtCW1tbo7m5OXbt2hWvvfZarF+/PrZu3drp99XX18c999yTmp3Y+qEfpdBd+gFA5wTGuczn6ZrP9SNd/QAAOBQ+fwAAFJf1VS55YrryRP1IVz8AAA6Fzx8AUBzyEnlJoWxIpFvYvXt3zJ49O+bMmRPNzc1Jl1MWdXV1MW3atLjllluib9++SZeTRT/0I2lp7gcAHRMYt818nq75XD/S1Q8AgEL5/AEAUFzWV22TJ6YrT9SPdPUDAKBQPn8AQPHIS+QlhbAhkW5l48aNcfvtt8djjz0W27ZtS7qckjjmmGPikksuialTp0ZDQ0PS5XRIP9JFPwCoBALjjpnP00U/AAAqm88fAADFZX3VMXliuugHAEBl8/kDAIpPXkJX2JBIt7R3795YsmRJLFy4MBYtWhSbNm2KSv1Rr6qqivr6+rjgggtiwoQJMXbs2KipqUm6rC7Rj3TRDwDSTGCcH/N5uugHAEBl8vkDAKC4rK/yI09MF/0AAKhMPn8AQOnIS8iHDYn0CM3NzfHqq6/G+vXrY/369fHmm2/G22+/HW+//XbSpWXp06dP9OnTJ4488sgYMmRIDBkyJE444YSoq6tLurSi0o900Q8A0kRgXJhSzectLS2xYMGCiIiYOHFi1NbWHtL5esp8bn0FAFAZfP4AACgu66vCyHfTRb4LAFAZfP4AgPKRl9AWGxIBAIDUEBini34AANCdWe8CABSX9VW66AcAAN2Z9S4AQLKqky4AAAAAAAAAAAAAAAAAAEg/GxIBAAAAAAAAAAAAAAAAgE7ZkAgAAAAAAAAAAAAAAAAAdMqGRAAAAAAAAAAAAAAAAACgUzYkAgAAAAAAAAAAAAAAAACdsiERAAAAAAAAAAAAAAAAAOiUDYkAAAAAAAAAAAAAAAAAQKdsSAQAAAAAAAAAAAAAAAAAOmVDIgAAAAAAAAAAAAAAAADQKRsSAQAAAAAAAAAAAAAAAIBO2ZAIAAAAAAAAAAAAAAAAAHTKhkQAAAAAAAAAAAAAAAAAoFM2JAIAAAAAAAAAAAAAAAAAnbIhEQAAAAAAAAAAAAAAAADolA2JAAAAAAAAAAAAAAAAAECnbEgEAAAAAAAAAAAAAAAAADplQyIAAAAAAAAAAAAAAAAA0CkbEgEAAAAAAAAAAAAAAACATtmQCAAAAAAAAAAAAAAAAAB0qibpAqAcmpub45VXXon169fHhg0b4o033oi33347mpubky4tS11dXfTp0yeOOuqoGDx4cAwZMiROPPHEqKurS7q0otKPdNEPAAAAANKsVPlVS0vLgX+/8cYbo7a29pDOJ78CAAAAAMgm3wWAyme/AW2pymQymaSLgGLbu3dvPPfcc7Fw4cJYtGhRbN68OSr1R72qqioGDRoUF1xwQUyYMCE+9rGPRU1NZe0l1o900Q8A0qypqSkOO+ywiIjYuXNn9O/fP+GKejb9AAAgCfIrAIDKJE9MF/0AACAJ8l0AqHzmc/JhQyLdyoYNG+Lb3/52PPbYY7Ft27akyymJo48+OsaPHx9Tp06NhoaGpMvpkH6ki34AUAn8BYl00Q8AAMpJfgUAUNnkiemiHwAAlJN8FwAqn/mcrrAhkW5h165dMXv27JgzZ07s2bMn6XLKoq6uLm6++ea45ZZbol+/fkmXk0U/9CNpae4HAB3zFyTSRT8AACgH+ZX8CgDoHuSJ6aIfAACUg3xXvgtA5TOfm88LYUMiFe/pp5+Oa665JjZv3tzpcwcMGBCDBw+OgQMHRr9+/aJ3795RXV1dhio719raGnv27Ildu3bF7373u9iwYUNs2bKl0++rr6+Pe+65J84///wyVNk5/dCPUugu/QCgc/6CRLroBwAApSa/kl8BAN2HPDFd9AMAgFKT78p3Aah83W0+X716dfz+97+PlpYW83mJ2ZBIRfvxj38cl156aezdu7fNr3/4wx+OCRMmxLnnnhtDhgyJI444oswVHprt27fH+vXrY/HixfHoo4/Gyy+/3Obzampq4tFHH42LL764zBVm04/99KM8Kq0fAOTHX5BIF/0AAKCU5Ff7ya8AgO5Cnpgu+gEAQCnJd/eT7wJQybrTfN7a2hpf/vKXY86cOfH444/HxRdfbD4vMRsSqVjt3fx69eoVkydPjsmTJ8eJJ56YUHWlsXHjxrjrrrti3rx5sW/fvqyvJX0T1A/9SFqa+wFA/vwFiXTRDwAASkV+Jb8CALofeWK66AcAAKUi35XvAlD5utN8vnv37rj88svjRz/6UURE/P73v49jjz0253nm8+KyIZGK9PTTT8cnP/nJnJvf2LFjY/78+TFs2LCEKiuPX/7yl3H99dfHkiVLssZramripz/9adl/Xax+6EeapK0fAHSNvyCRLvoBAEApyK/kVwBA9yRPTBf9AACgFOS78l0AKl93ms+3bNkS48aNixdeeCEiIurr6+PVV1/t8HvM58VhQyIVZ9euXXHKKafE5s2bs8YnTpwYd999d1RXVydUWXm1trbGtddeGwsWLMgar6+vj7Vr10bfvn3LUod+7Kcf6ZKWfgDQdf6CRLroBwAAxSa/2k9+BQB0R/LEdNEPAACKTb67n3wXgErWnebzNWvWxCc/+cmsP8tll10W//qv/9rp95rPD13l/KTA/zN79uxucfM7VNXV1XH33XfHxIkTs8Y3bdoUs2fPLlsd+rGffqRLWvoBAAAAQDb51X7yKwAAAACg0sh395PvAlDJust8vnjx4hgzZkzOn2X06NF5fb/5/ND5DYlUlA0bNsSwYcOiubn5wNjYsWPj2WefraibXzG1trbG2WefHUuXLj0wVldXF2vWrImGhoaSXls/culHuiTZDwAK4//YnC76AQBAMcmvcsmvAIDuRJ6YLvoBAEAxyXdzyXcBqDTdZT6/77774rrrrou9e/fmfO2///u/Y9SoUXmfy3xeuMr5iYGI+Pa3v5118+vVq1fMnz+/om5+xVZdXR3z58+PXr16HRhrbm6O22+/veTX1o9c+pEuSfYDAAAAgGzyq1zyKwAAAACgEsh3c8l3Aag0lT6ft7a2xrRp02LixIltbkbs27dvjBgxokvnNJ8XrjJ+aiAi9u7dG4899ljW2OTJk2PYsGEJVZQep556akyePDlr7PHHH2/zJlss+tE+/UiXJPoBAAAAQDb5VfvkVwAAAABAmsl32yffBaBSVPp8vnv37rj00kvjm9/8ZrvPGTVqVNTW1nb53ObzwtiQSMV47rnnYtu2bVljB7/pe7JJkyZlPd66dWssWbKkZNfTj47pR7qUux8AAAAAZJNfdUx+BQAAAACklXy3Y/JdACpBJc/nW7ZsibPPPjtnQ+XBRo8eXfA1zOddZ0MiFWPhwoVZjz/84Q/HiSeemFA16dPQ0BCnnXZa1tjBr1kx6UfH9CNdyt0PAAAAALLJrzomvwIAAAAA0kq+2zH5LgCVoFLn8zVr1sQZZ5wRL7zwQtZ4dXXudrhD2ZBoPu86GxKpGIsWLcp6PGHChIQqSa+DX5ODX7Ni0o/O6Ue6lLMfAAAAAGSTX3VOfgUAAAAApJF8t3PyXQDSrhLn82eeeSbGjBkTmzdvzhp/z3veE7fffnvO8z/60Y8e0vXM511jQyIVobm5Oecmcu655yZUTXqdd955WY83b94czc3NRb+OfuRHP9KlXP0AAAAAIJv8Kj/yKwAAAAAgbeS7+ZHvApBmlTifL1iwIC688MLYvn171nh9fX3813/9V/Tr1y9n/Nhjjz2ka5rPu8aGRCrCK6+8EplMJmvspJNOSqia9BoyZEjW49bW1nj11VeLfh39yI9+pEu5+gEAAABANvlVfuRXAAAAAEDayHfzI98FIM0qaT5vbW2NadOmxTXXXBP79u3L+toZZ5wRy5cvj1NOOSWWLVuW9bXRo0cf8rXN511jQyIVYf369VmPBwwYEIcffnhC1aTXEUccEcccc0zW2MGvXTHoR370I13K1Q8AAAAAssmv8iO/AgAAAADSRr6bH/kuAGlWKfP5rl274tJLL41vfvObbX794YcfjgEDBkRElGRDovm8a2xIpCJs2LAh6/HgwYMTqiT9Dt6VXYoboH7kTz/SpRz9AAAAACCb/Cp/8isAAAAAIE3ku/mT7wKQVpUyn7/11luxe/fudr9+0kknxYUXXhhvvPFG/OY3v8n6WjE2JEaYz7vChkQqwhtvvJH1eODAgQlVkn7HH3981uM333yz6NfQj/zpR7qUox8AAAAAZJNf5U9+BQAAAACkiXw3f/JdANKqUubz448/Pv7jP/4jnnzyyaivr2/zOU899VQcffTRWWN9+/aNESNGFK2GdzOft8+GRCrC22+/nfW4X79+CVWSfge/Nge/dsWgH/nTj3QpRz8AAAAAyCa/yp/8CgAAAABIE/lu/uS7AKRVmufzffv2xb59+w48rqqqinHjxsXatWtj5syZeZ1j1KhRUVtbW5R6zOf5q0m6AMhHc3Nz1uPevXsnVEn61dXVZT0uxQ1QP/KnH+lSjn4AAAAAkE1+lT/5FQAAAACQJvLd/Ml3AUirpOfzPXv2xMqVK7OONWvWxI4dO6KlpSUiImpra+Pwww+PD33oQzFixIgYMWJEfOADH8jr/KNHjy5arebz/NmQSEWqrvbLPduTxGujH+3Tj3Tx2gAAAAAkT0bTPq8NAAAAAJBmMsz2eW0AqBTlmrNWrFgR999/f/zLv/xLvPXWWx0+t6WlJd56661YunRpLF26tEvXKeaGRPN5/mxIBAAAAAAAAAAAAAAAAKBge/fuje9///tx9913x4oVK4p+/k9+8pOxePHirN/6+NGPfrTo16FzNiQCAAAAAAAAAAAAAAAAUJBly5bFddddFytXrizZNX7605/G0KFD473vfW8sW7Ys6uvr49hjjy3Z9WifDYkAAAAAAAAAAAAAAAAAdMmbb74Zt9xyS9x3330dPu+kk06KESNGHDiOO+64qKuri4iI5ubmeP3112PlypXxta99Les3IB7sV7/6VUREnHfeeTFs2LDi/UHoEhsSAQCA1GhpaWnz30mGfgAAAAAA+ZInpot+AAAAAFBqK1asiE996lPx+uuvt/n1gQMHxhVXXBGf//zno6GhocNzNTY2xpFHHhm33nprXtd+5plnYu3atXH55ZfHyJEju1o6h6g66QIAAICebcWKFTFlypQ4/fTTY8CAAQfGBwwYEKeffnpMmTIlVq5cmWCFPYt+AAAAAAD5kiemi34AAAAAUC5PPfVUnHnmmW1uRhw2bFj87Gc/i1dffTVuu+22TjcjRkRkMpkYM2ZMzvgdd9wRP/vZz9r8bYivv/56nHnmmfHUU08V9oegYDYkAgAAiVi1alWMHTs2GhsbY968efHiiy/Gnj17Dnx9z5498eKLL8a8efNi5MiRMXbs2Fi1alWCFXdv+gEAAAAA5EuemC76AQAAAEA5/eQnP4lx48ZFU1NT1nj//v3j9ttvj5dffjk+8YlPRK9evfI+54wZM9ocv+GGG+ITn/hEvPzyy3H77bdH//79s77e1NQUF110UfzkJz/p+h+EgtmQCAAAlFUmk4nZs2fHqFGjYunSpXl/39KlS2PUqFExe/bsyGQyJaywZ9EPAAAAACBf8sR00Q8AAAAAyu3555+P8ePHR0tLS9b4WWedFevWrYubbropamtru3TOHTt2xKxZs3LG161bd+Dfa2tr46abbop169bFmWeemfW8PXv2xPjx4+P555/v0nUpnA2JAABA2WQymZg8eXJMnz4958NoPlpaWmL69OkxefJkf0miCPQDAAAAAMiXPDFd9AMAAACAcvvjH/8Yn/nMZ3LyqMsuuyyeeeaZGDhwYEHnbWhoyBlrbGyMoUOH5owPHDgwFi9eHJdddlnWeEtLS3zmM5+JP/3pTwXVQNd0+w2JmUwmHn/88TjnnHPif/yP/xH9+vWLk08+Ob7whS/EK6+8knR5pNSmTZuiqqoq66itrY3jjjsuLr300njxxReznr9jx46or6+PPn36xNq1a9s855w5c6KqqiquvvrqcvwRuhX9SKd8+3LnnXdGVVVVXHnlle2e6+c//3lUV1fH6aefHnv37i3XHwGABMyZMyfmz59/yOeZP39+zJkzpwgV9Wz6AQBAdya/AgAoLnliuugHAADdmXwXANInk8nExIkT47e//W3W+FVXXRUPP/xw1NXVFXTeZcuWxbZt23LGly9f3u731NXVxcMPPxxXXXVV1vhvf/vbmDhxov8BVxl0+w2JU6dOjfHjx8evf/3r+Pu///uYPHlynHDCCbFgwYIYOXJk/PKXv0y6RFKsoaEh/umf/in+6Z/+KW644YY4+eSTY+HChTFmzJhYsmTJgecdfvjhcf/998eePXvi85//fM4HltWrV8fMmTNj0KBBcccdd5T7j9Ft6Ec6ddaXL/3/7d17jNTl+Tfge9kTi4qpJ0ylAbtQVxvANR4iAqK2UJMGo4bGtMaIldbDlkqhLhRL0RpXY0vZ4hGMgjE1lZpqbdKiprZSAyZiOVSoga1Y+UPY2FQW0HWR+f3BK6/DADMMc/jO7nUlT8w8u/PMzd4wD3zinfnhD2P8+PGxZMmSeOGFFzKev3PnzpgyZUrU19fHk08+GTU1NWX4VQBQCuvWrYu5c+cW7Ly5c+fGunXrCnZeX6MfAAD0FfIrAICjJ09MFv0AAKCvkO8CQHIsXrw4nn322bS98ePHx6JFi6K6ujqvM1OpVIwePTpjv729Perq6g773Orq6li0aFFcfPHFafu/+93v4rHHHsurHnLXqwcS33///ViwYEEMGTIkNm7cGA8//HDcd9998ec//zl++ctfRldXV8yfP7/cZZJgw4YNi3nz5sW8efPi/vvvj7/85S/R1tYWPT098dOf/jTtey+99NK49dZb44033oh77rln/35PT09cd9110dPTE0888UQcd9xxpf5l9Br6kUzZ+lJVVRVLliyJgQMHxtSpU+ODDz5Ie/6MGTNiy5Yt0dbWFmeeeWaZfhUAlEJLS0v09PQU7Lyenp5oaWkp2Hl9jX4AANBXyK8AAI6ePDFZ9AMAgL5CvgsAybB79+6YPXt22t4JJ5wQTz31VN7DiBERc+bMOej+tGnTcnp+dXV1PPXUU3HCCSek7c+ePTt2796dd11k16sHErds2RJ79+6Niy66KI4//vi0r33zm9+MiDjox3rC4Xz3u9+NiIjVq1dnfO2+++6LYcOGxd133x1r1qyJiIi77ror1qxZEz/4wQ/ikksuKWWpfYJ+JNOBfRkyZEgsWLAgtm3bFjfffPP+71u+fHksWrQoLrnkkvjhD39YlloBKI01a9bEihUrCn7uihUrYu3atQU/t7fTDwAA+jr5FQBA7uSJyaIfAAD0dfJdACi9JUuWxH//+9+0vSeeeCJOO+20vM/s6uqKtra2jP2NGzce0TmDBw+Oxx9/PG3vgw8+iKVLl+ZdG9n16oHE4cOHR11dXbz22muxY8eOtK/98Y9/jIiIyy67rByl0Qsc7GPbBwwYEEuWLIlPP/00rrvuuvj73/8ebW1tccYZZ8S9995bhir7Dv1Ips/3ZcqUKTFp0qRYtmxZPP300/G///0vbrzxxhg4cGA88cQTUVVVVcZKASi2A/+xVyln91b6AQAA+8ivAACykycmi34AAMA+8l0AKI1PP/005s+fn7Z3+eWXx6RJk47q3MbGxoy95ubmaGpqOuKzrrjiirj88svT9ubPnx+ffvpp3vVxeL16IPHEE0+Me++9N/7zn/9EU1NT3HzzzdHa2hrf+MY3orW1NW655ZZoaWkpd5lUmMceeywiIsaMGXPQr1900UXxox/9KNavXx9f+9rXIiJi6dKl0dDQULIa+xL9SKZD9WXRokVx0kknxa233hrXX399bN26NRYsWBBDhgwpR5kAlNDKlSsr8uzeSj8AAOjr5FcAALmTJyaLfgAA0NfJdwGgtJ5//vno6OhI25s5c+ZRnbly5cro7OzM2F+1alXeZ86YMSPt8ebNm+MPf/hD3udxeJkfKdbLTJ8+PU477bS48cYb45FHHtm/P2bMmPj2t7990E9VS7JUKhW7d+8udxkl19PTU5bX3bx5c8ybNy8iInbt2hWrV6+OV155JQYNGhT333//IZ83d+7cePDBB+Ojjz6KlpaWuOCCC0pUcaaenp7YtWtXwc8sB/049JnldCR9GTRoUDz66KNx9dVXx/PPPx+TJk2KKVOmlKHqfYrRDwAy9fT0xLp164p2/rp16+LDDz+suL/bl4t+AABQavKr/MmvAIBykycmi34AAFBq8t38yXcBSIqjvc+feeaZtMfNzc1xySWX5H1eKpWK0aNHZ+y3t7dHXV1d3udeeumlcfbZZ8eaNWv27/32t7+NK6+8Mu8zOYxUL3fnnXemamtrU21tban33nsv1dXVlVqxYkXq3HPPTdXU1KSef/75cpd4RHbu3JmKiD6/brnllqL+nN95551Dvvapp56a2rRp02GfP3fu3P3fP2zYsNSuXbuKWu/n3XLLLfpxAP0ojqPpy/nnn5+KiNSGDRtKUutnytEPy7Isy7Isy7Isy7IsK33Jrw5NfmVZlmVZlmVZlmVZlmVZVpKXfPfQ5LuWZVlWpawjvc+HDBmS9vyHH374qO7M2bNnH7SuQnjooYfSzhw6dOgRPf/A+7xUf/epRP2iF3v55ZfjZz/7WbS0tMSsWbNi8ODBceyxx8aYMWPihRdeiNra2oyP5ITPmzhxYqRSqUilUrF9+/a4//77Y/v27TFp0qTYuXPnQZ+zevXquOeee+KMM86ImTNnxubNm2P27Nklrrx30o9kyqcvDQ0Naf8FAAAAgGKRXwEAAAAAVCb5LgCU1/vvvx/vvvtu2t6YMWPyPq+rqyva2toy9jdu3Jj3mZ93YG1btmyJbdu2FeRs0tWUu4Bi+tOf/hQRcdCPAj311FOjqakp/vGPf8TOnTvj2GOPLXV5eRkwYMAh/wLdm02fPj0WL15c1hpOPvnkmDlzZnz44Ydx9913xx133BELFixI+57u7u647rrrIpVKxdKlS+Occ86JF198MRYuXBhXX311jBs3ruR1T506NX71q18V9Ez9yF9v7cdnculLkhSjHwBk6unpiUGDBsUnn3xSlPPr6+tj27ZtUVPTq/95UzD6AQBAqcmv8ie/AgDKTZ6YLPoBAECpyXfzJ98FICmO5j5//fXX0x4fd9xxceaZZ+ZdS2NjY8Zec3NzNDU15X3m55111llx7LHHps1dvf766zFp0qSCnM//16sTxM8C2M7OzoN+vbOzM/r16xe1tbWlLOuoVFVVxTHHHFPuMkouST36yU9+Eo8//ng89NBDcdttt8XQoUP3f+2OO+6IDRs2xOzZs+OCCy6IiIilS5fG+eefHzfccEOsW7cuBgwYUNJ6a2trC/57Rj/y19v78ZnD9SVJitEPAA5u5MiR8cYbbxTt7OOPP74oZ/dW+gEAQCnJr/InvwIAkkCemCz6AQBAKcl38yffBSApjuY+X7t2bdrj8847L6qrq/M6a+XKlQed71q1alVe5x1MdXV1nHfeefHKK6/s31uzZo2BxCLoV+4Ciumiiy6KiIj58+fHhx9+mPa1Rx55JLZu3RoXXnhh1NfXl6M8KlRDQ0O0trZGT09P/PznP9+//9prr8X8+fNjxIgRMW/evP37Z599dsyZMyc6OjqitbW1DBX3bvqRTIfqCwB914UXXliRZ/dW+gEAQF8nvwIAyJ08MVn0AwCAvk6+CwCl09XVlfb4S1/6Ul7npFKpGD16dMZ+e3t71NXV5XXmoRxY4+c/LZHC6dUDiZMnT45x48bFW2+9FV/5yldi6tSp8eMf/zguu+yyuPnmm6OhoSHmz59f7jKpQN/73vfii1/8Yjz55JPR0dERu3btiuuvvz6qq6tj6dKlGW+Ic+bMiebm5njwwQfjb3/7W5mq7r30I5kO7AsAfdsNN9xQkWf3VvoBAADyKwCAXMkTk0U/AABAvgsApTJq1Ki45ppr4oorrogJEybEiBEj8jpnzpw5B92fNm3a0ZR3UCNHjowJEybEFVdcEddcc02MGjWq4K9BLx9IrK6ujhdffDHa2tritNNOi9/85jexYMGCePvtt+Paa6+N1atXx/nnn1/uMqlA/fv3j9mzZ8eePXvizjvvjNtvvz02b94cd9xxRzQ3N2d8f01NTSxdujRqa2tjypQpsWvXrjJU3XvpRzId2BcA+razzz47xo4dW/Bzx44d6x+LedAPAACQXwEA5EqemCz6AQAA8l0AKJVrr702nn766Xjuuedi+fLlMWPGjCM+o6urK9ra2jL2N27cWIgSM8yYMSOWL18ezz33XDz99NPxne98pyiv09fVlLuAYquvr49Zs2bFrFmzyl0KFWTo0KGRSqUO+z0tLS3R0tKy//GDDz542O8fMWJEdHd3F6S+vkY/kimfvnzmr3/9a5GqAiDJHnjggTj33HOjp6enIOfV1tZmvfM5NP0AAKC3k18BABSOPDFZ9AMAgN5OvgsAvUdjY2PGXnNzczQ1NZWhGgqlV39CIgAAkBwjR46Mu+66q2Dn3XXXXTFixIiCndfX6AcAAAAAkCt5YrLoBwAAAACVYOXKldHZ2Zmxv2rVqjJUQyEZSAQAAEqmtbU1br311qM+p6WlJVpbWwtQUd+mHwAAAABAruSJyaIfAAAAACRZKpWK0aNHZ+y3t7dHXV1dGSqikAwkAgAAJVNVVRULFy6Mtra2qK2tPeLn19bWRltbW/z617+OqqqqIlTYt+gHAAAAAJAreWKy6AcAAAAASTZnzpyD7k+bNq3ElVAMBhIBAICSqqqqilmzZsUbb7wRY8eOzfl5Y8eOjdWrV8esWbP8zxEFpB8AAAAAQK7kicmiHwAAAAAkUVdXV7S1tWXsb9y4sQzVUAw15S4AAADom0aOHBmvvvpqrF27Nh5//PFYuXJlrF27Nj755JOIiKivr4+RI0fGhRdeGDfccEOMGjWqzBX3bvoBAAAAAORKnpgs+gEAAABAkjQ2NmbsNTc3R1NTUxmqoRgMJAIAAGU1atSoaG9vj4iIPXv2xI4dOyIiYuDAgVFT458spaYfAAAAAECu5InJoh8AAAAAlNvKlSujs7MzY3/VqlVlqIZikTYCAACJUVNTEyeccEK5y+D/0Q8AAAAAIFfyxGTRDwAAAABKLZVKxejRozP229vbo66urgwVUSz9yl0AAAAAAAAAAAAAAAAAAJVrzpw5B92fNm1aiSuh2AwkAgAAAAAAAAAAAAAAAJCXrq6uaGtry9jfuHFjGaqh2AwkAgAAAAAAAAAAAAAAAJCXxsbGjL3m5uZoamoqQzUUm4FEKtLevXvLXUJileNnox+Hph/J4mcDAAAAUH4ymkPzswEAAAAAkkyGeWh+NgBUimLcWf/617+is7MzY3/VqlUFf61icp/nzkAiFaG+vj7t8SeffFKmSpKvu7s77XH//v0L/hr6kTv9SJZS9AMAAACAdPKr3MmvAAAAAIAkke/mTr4LQFIV+z5PpVJx2223Zey3t7dHXV1dQV+r2NznuTOQSEU48A/x7t27y1RJ8h34synGG6B+5E4/kqUU/QAAAAAgnfwqd/IrAAAAACBJ5Lu5k+8CkFTFvs+3b98eb7/9dtreF77whZg2bVpBX6cU3Oe5M5BIRTjppJPSHr/33ntlqiT5tm7dmvb4xBNPLPhr6Efu9CNZStEPAAAAANLJr3InvwIAAAAAkkS+mzv5LgBJVez7fNCgQbFhw4aYO3du1NfXxzHHHBPr1q0r6GuUivs8dwYSqQjDhg1Le7x58+YyVZJ8mzZtSns8fPjwgr+GfuROP5KlFP0AAAAAIJ38KnfyKwAAAAAgSeS7uZPvApBUpbjPGxoa4s4774y33nornnzyyRg8eHDBX6MU3Oe5M5BIRTjwD/G2bdtix44dZaomuXbs2BHbt29P2yvGG6B+5EY/kqVU/QAAAAAgnfwqN/IrAAAAACBp5Lu5ke8CkGSlvM8bGxvjqquuKsrZxeY+PzIGEqkIX/7yl6Oqqipt78DJYzJ/Jv369YvTTz+94K+jH7nRj2QpVT8AAAAASCe/yo38CgAAAABIGvlubuS7ACSZ+zw37vMjYyCRilBfXx9DhgxJ23v55ZfLVE1yvfTSS2mPhwwZEvX19QV/Hf3IjX4kS6n6AQAAAEA6+VVu5FcAAAAAQNLId3Mj3wUgydznuXGfHxkDiVSMiRMnpj1etmxZmSpJrgN/Jgf+zApJP7LTj2QpZT8AAAAASCe/yk5+BQAAAAAkkXw3O/kuAEnnPs/OfX5kDCRSMSZPnpz2ePXq1fHvf/+7TNUkT0dHR7z55ptpewf+zApJPw5PP5Kl1P0AAAAAIJ386vDkVwAAAABAUsl3D0++C0AlcJ8fnvv8yBlIpGJcfPHFcfLJJ6ftLVy4sEzVJM8DDzyQ9viUU06JcePGFe319OPw9CNZSt0PAAAAANLJrw5PfgUAAAAAJJV89/DkuwBUAvf54bnPj5yBRCpGTU1NXH311Wl7CxcujH/+859lqig51q9fn3EZXHXVVVFTU1O019SPQ9OPZClHPwAAAABIJ786NPkVAAAAAJBk8t1Dk+8CUCnc54fmPs9PVSqVSpW7CMhVR0dHfPWrX43u7u79e+PGjYtXXnkl+vXrm/O1e/fujfHjx8eKFSv279XX18dbb70VjY2NRX1t/cikH8lSzn4AAAAAkE5+lUl+BQAAAABUAvluJvkuAJXGfZ7JfZ6/vvk7horV2NgYt99+e9req6++GjfddFPs3bu3TFWVz969e+Omm25Ke/OLiGhtbS3Jm59+pNOPZCl3PwAAAABIJ79KJ78CAAAAACqFfDedfBeASuQ+T+c+Pzo+IZGKs3v37jjrrLPi3XffTdufOnVqPPLII31mMvuzN7/Fixen7Q8dOjQ2bNgQDQ0NJalDP/bRj2RJSj8AAAAASCe/2kd+BQAAAABUGvnuPvJdACqZ+3wf9/nR6xu/U+hVBgwYEIsWLYqampq0/cWLF8f48eNj/fr1ZaqsdNavXx/jx4/PePOrqamJRx99tKRvfvqhH0mTpH4AAAAAkE5+Jb8CAAAAACqTfFe+C0Dlc5+7zwvFQCIVacKECfHMM89kvAmuWLEimpubY/r06dHR0VGm6oqno6Mjpk+fHs3NzRkfC1tTUxPPPPNMTJgwoeR16Yd+JEFS+wEAAABAOvmV/AoAAAAAqEzyXfkuAJXPfe4+L4SqVCqVKncRkK/f//738a1vfSv27Nlz0K+fc845MXny5Pj6178ew4cPj4EDB5a4wqOzY8eO2LRpU7z00kuxbNmyePPNNw/6fZ+9+V155ZUlrjCdfuyjH6VRaf0AAAAAIJ38ah/5FQAAAABQaeS7+8h3Aahk7vN93Of5MZBIxXvxxRfj+9//fmzZsiXr955yyikxfPjwGDx4cAwYMCDq6+ujX79kfFDo3r17o7u7O3bv3h1bt26NTZs2xfbt27M+b+jQofHoo48mZhJbP/SjGHpLPwAAAABIJ7+SXwEAAAAAlUm+K98FoPK5z93n+TKQSK/w0Ucfxb333hv33XdfdHd3l7uckqivr4/W1taYNWtWNDQ0lLucNPqhH+WW5H4AAAAAkE5+Jb8CAAAAACqTfFe+C0Dlc5+7z/NhIJFepaOjI37xi1/Es88+G52dneUupyhOOeWUuOqqq2LmzJnR2NhY7nIOSz+SRT8AAAAASDL5FQAAAABAZZLvAkDlc59zJAwk0ivt2bMnXn311Vi2bFksX748tmzZEpX6W72qqiqGDh0aEydOjMmTJ8e4ceOipqam3GUdEf1IFv0AAAAAIMnkVwAAAAAAlUm+CwCVz31OLgwk0id0d3fHO++8E5s2bYpNmzbFBx98EB9//HF8/PHH5S4tTf/+/aN///5x4oknxvDhw2P48OFx+umnR319fblLKyj9SBb9AAAAACDJ5FcAAAAAAJVJvgsAlc99zsEYSAQAAAAAAAAAAAAAAAAAsupX7gIAAAAAAAAAAAAAAAAAgOQzkAgAAAAAAAAAAAAAAAAAZGUgEQAAAAAAAAAAAAAAAADIykAiAAAAAAAAAAAAAAAAAJCVgUQAAAAAAAAAAAAAAAAAICsDiQAAAAAAAAAAAAAAAABAVgYSAQAAAAAAAAAAAAAAAICsDCQCAAAAAAAAAAAAAAAAAFkZSAQAAAAAAAAAAAAAAAAAsjKQCAAAAAAAAAAAAAAAAABkZSARAAAAAAAAAAAAAAAAAMjKQCIAAAAAAAAAAAAAAAAAkJWBRAAAAAAAAAAAAAAAAAAgKwOJAAAAAAAAAAAAAAAAAEBWBhIBAAAAAAAAAAAAAAAAgKwMJAIAAAAAAAAAAAAAAAAAWRlIBAAAAAAAAAAAAAAAAACyMpAIAAAAAAAAAAAAAAAAAGRlIBEAAAAAAAAAAAAAAAAAyMpAIgAAAAAAAAAAAAAAAACQlYFEAAAAAAAAAAAAAAAAACArA4kAAAAAAAAAAAAAAAAAQFYGEgEAAAAAAAAAAAAAAACArAwkAgAAAAAAAAAAAAAAAABZGUgEAAAAAAAAAAAAAAAAALIykAgAAAAAAAAAAAAAAAAAZGUgEQAAAAAAAAAAAAAAAADIykAiAAAAAAAAAAAAAAAAAJCVgUQAAAAAAAAAAAAAAAAAICsDiQAAAAAAAAAAAAAAAABAVgYSAQAAAAAAAAAAAAAAAICsDCQCAAAAAAAAAAAAAAAAAFkZSAQAAAAAAAAAAAAAAAAAsjKQCAAAAAAAAAAAAAAAAABkZSARAAAAAAAAAAAAAAAAAMjKQCIAAAAAAAAAAAAAAAAAkJWBRAAAAAAAAAAAAAAAAAAgKwOJAAAAAAAAAAAAAAAAAEBWBhIBAAAAAAAAAAAAAAAAgKwMJAIAAAAAAAAAAAAAAAAAWRlIBAAAAAAAAAAAAAAAAACyMpAIAAAAAAAAAAAAAAAAAGRlIBEAAAAAAAAAAAAAAAAAyMpAIgAAAAAAAAAAAAAAAACQlYFEAAAAAAAAAAAAAAAAACArA4kAAAAAAAAAAAAAAAAAQFYGEgEAAAAAAAAAAAAAAACArAwkAgAAAAAAAAAAAAAAAABZGUgEAAAAAAAAAAAAAAAAALIykAgAAAAAAAAAAAAAAAAAZGUgEQAAAAAAAAAAAAAAAADIykAiAAAAAAAAAAAAAAAAAJCVgUQAAAAAAAAAAAAAAAAAICsDiQAAAAAAAAAAAAAAAABAVgYSAQAAAAAAAAAAAAAAAICsDCQCAAAAAAAAAAAAAAAAAFkZSAQAAAAAAAAAAAAAAAAAsjKQCAAAAAAAAAAAAAAAAABkZSARAAAAAAAAAAAAAAAAAMjKQCIAAAAAAAAAAAAAAAAAkJWBRAAAAAAAAAAAAAAAAAAgKwOJAAAAAAAAAAAAAAAAAEBWBhIBAAAAAAAAAAAAAAAAgKwMJAIAAAAAAAAAAAAAAAAAWRlIBAAAAAAAAAAAAAAAAACyMpAIAAAAAAAAAAAAAAAAAGRlIBEAAAAAAAAAAAAAAAAAyMpAIgAAAAAAAAAAAAAAAACQlYFEAAAAAAAAAAAAAAAAACCr/wMNIGVEKqknzgAAAABJRU5ErkJggg==\n"
          },
          "metadata": {}
        }
      ],
      "source": [
        "@qml.qnode(dev, interface=\"torch\")\n",
        "def circuit_no_sym(x, p):\n",
        "\n",
        "    qml.RX(x[0], wires=0)\n",
        "    qml.RX(x[1], wires=1)\n",
        "    qml.RX(x[2], wires=2)\n",
        "    qml.RX(x[3], wires=3)\n",
        "    qml.RX(x[4], wires=4)\n",
        "    qml.RX(x[5], wires=5)\n",
        "    qml.RX(x[6], wires=6)\n",
        "    qml.RX(x[7], wires=7)\n",
        "    qml.RX(x[8], wires=8)\n",
        "\n",
        "    # Centre single-qubit rotation\n",
        "    qml.RX(p[0], wires=4)\n",
        "    qml.RY(p[1], wires=4)\n",
        "\n",
        "    # Note in this circuit the parameters aren't all the same.\n",
        "    # Previously they were identical to ensure they were applied\n",
        "    # as one combined gate. The fact they can all vary independently\n",
        "    # here means we aren't respecting the symmetry.\n",
        "\n",
        "    # Corner single-qubit rotation\n",
        "    qml.RX(p[2], wires=0)\n",
        "    qml.RX(p[3], wires=2)\n",
        "    qml.RX(p[4], wires=6)\n",
        "    qml.RX(p[5], wires=8)\n",
        "\n",
        "    qml.RY(p[6], wires=0)\n",
        "    qml.RY(p[7], wires=2)\n",
        "    qml.RY(p[8], wires=6)\n",
        "    qml.RY(p[9], wires=8)\n",
        "\n",
        "    # Edge single-qubit rotation\n",
        "    qml.RX(p[10], wires=1)\n",
        "    qml.RX(p[11], wires=3)\n",
        "    qml.RX(p[12], wires=5)\n",
        "    qml.RX(p[13], wires=7)\n",
        "\n",
        "    qml.RY(p[14], wires=1)\n",
        "    qml.RY(p[15], wires=3)\n",
        "    qml.RY(p[16], wires=5)\n",
        "    qml.RY(p[17], wires=7)\n",
        "\n",
        "    # Double Entagling two-qubit gates\n",
        "    # circling the edge of the board\n",
        "    qml.CRY(p[18], wires=[0, 1])\n",
        "    qml.CRY(p[19], wires=[2, 1])\n",
        "    qml.CRY(p[20], wires=[2, 5])\n",
        "    qml.CRY(p[21], wires=[8, 5])\n",
        "    qml.CRY(p[22], wires=[8, 7])\n",
        "    qml.CRY(p[23], wires=[6, 7])\n",
        "    qml.CRY(p[24], wires=[6, 3])\n",
        "    qml.CRY(p[25], wires=[0, 3])\n",
        "\n",
        "    # To the corners from the centre\n",
        "    qml.CRY(p[26], wires=[4, 0])\n",
        "    qml.CRY(p[27], wires=[4, 2])\n",
        "    qml.CRY(p[28], wires=[4, 6])\n",
        "    qml.CRY(p[29], wires=[4, 8])\n",
        "\n",
        "    # To the centre from the edges\n",
        "    qml.CRY(p[30], wires=[1, 4])\n",
        "    qml.CRY(p[31], wires=[3, 4])\n",
        "    qml.CRY(p[32], wires=[5, 4])\n",
        "    qml.CRY(p[33], wires=[7, 4])\n",
        "\n",
        "    # circling the edge of the board\n",
        "    qml.CRY(p[18], wires=[0, 1])\n",
        "    qml.CRY(p[19], wires=[2, 1])\n",
        "    qml.CRY(p[20], wires=[2, 5])\n",
        "    qml.CRY(p[21], wires=[8, 5])\n",
        "    qml.CRY(p[22], wires=[8, 7])\n",
        "    qml.CRY(p[23], wires=[6, 7])\n",
        "    qml.CRY(p[24], wires=[6, 3])\n",
        "    qml.CRY(p[25], wires=[0, 3])\n",
        "\n",
        "    # To the corners from the centre\n",
        "    qml.CRY(p[26], wires=[4, 0])\n",
        "    qml.CRY(p[27], wires=[4, 2])\n",
        "    qml.CRY(p[28], wires=[4, 6])\n",
        "    qml.CRY(p[29], wires=[4, 8])\n",
        "\n",
        "    # To the centre from the edges\n",
        "    qml.CRY(p[30], wires=[1, 4])\n",
        "    qml.CRY(p[31], wires=[3, 4])\n",
        "    qml.CRY(p[32], wires=[5, 4])\n",
        "    qml.CRY(p[33], wires=[7, 4])\n",
        "\n",
        "    return [qml.expval(ob_center), qml.expval(ob_corner), qml.expval(ob_edge)]\n",
        "\n",
        "\n",
        "fig, ax = qml.draw_mpl(circuit_no_sym)([0] * 9, [0] * 34)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "1REWjSNvPtCJ"
      },
      "source": [
        "Note again how, though these circuits have a similar form to before,\n",
        "they are parameterised differently. We need to feed the vector\n",
        "$\\boldsymbol{y}$ made up of the expectation value of these three\n",
        "operators into the loss function and use this to update our parameters.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 32,
      "metadata": {
        "id": "7wTu3Uw_PtCJ"
      },
      "outputs": [],
      "source": [
        "import math\n",
        "\n",
        "def encode_game(game):\n",
        "    board, res = game\n",
        "    x = board * (2 * math.pi) / 3\n",
        "    if res == 1:\n",
        "        y = [-1, -1, 1]\n",
        "    elif res == -1:\n",
        "        y = [1, -1, -1]\n",
        "    else:\n",
        "        y = [-1, 1, -1]\n",
        "    return x, y"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qMYUsXoZPtCJ"
      },
      "source": [
        "Recall that the loss function we\\'re interested in is\n",
        "$\\mathcal{L}(\\mathcal{D})=\\frac{1}{|\\mathcal{D}|} \\sum_{(\\boldsymbol{g}, \\boldsymbol{y}) \\in \\mathcal{D}}\\|\\hat{\\boldsymbol{y}}(\\boldsymbol{g})-\\boldsymbol{y}\\|_{2}^{2}$.\n",
        "We need to define this and then we can begin our optimisation.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 33,
      "metadata": {
        "id": "_RVbTFtXPtCJ"
      },
      "outputs": [],
      "source": [
        "# calculate the mean square error for this classification problem\n",
        "def cost_function(params, input, target):\n",
        "    output = torch.stack([torch.hstack(circuit(x, params)) for x in input])\n",
        "    vec = output - target\n",
        "    sum_sqr = torch.sum(vec * vec, dim=1)\n",
        "    return torch.mean(sum_sqr)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "wiKzIjHSPtCJ"
      },
      "source": [
        "Let\\'s now train our symmetry-preserving circuit on the data.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 34,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 0
        },
        "id": "ISDNjQj0PtCK",
        "outputId": "87073ef7-b85d-417d-8a22-fd90da89a471"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "accuracy without training = 0.2383333295583725\n",
            "Epoch:  1 | Loss: 2.988494 | Validation accuracy: 0.181667\n",
            "Epoch:  2 | Loss: 2.830764 | Validation accuracy: 0.485000\n",
            "Epoch:  3 | Loss: 2.706721 | Validation accuracy: 0.530000\n",
            "Epoch:  4 | Loss: 2.681705 | Validation accuracy: 0.551667\n",
            "Epoch:  5 | Loss: 2.597889 | Validation accuracy: 0.546667\n",
            "Epoch:  6 | Loss: 2.639447 | Validation accuracy: 0.586667\n",
            "Epoch:  7 | Loss: 2.628288 | Validation accuracy: 0.583333\n",
            "Epoch:  8 | Loss: 2.539564 | Validation accuracy: 0.546667\n",
            "Epoch:  9 | Loss: 2.631857 | Validation accuracy: 0.545000\n",
            "Epoch: 10 | Loss: 2.599202 | Validation accuracy: 0.573333\n",
            "Epoch: 11 | Loss: 2.593311 | Validation accuracy: 0.576667\n",
            "Epoch: 12 | Loss: 2.593363 | Validation accuracy: 0.570000\n",
            "Epoch: 13 | Loss: 2.648465 | Validation accuracy: 0.578333\n",
            "Epoch: 14 | Loss: 2.587668 | Validation accuracy: 0.575000\n",
            "Epoch: 15 | Loss: 2.594217 | Validation accuracy: 0.575000\n"
          ]
        }
      ],
      "source": [
        "from torch import optim\n",
        "import numpy as np\n",
        "\n",
        "params = 0.01 * torch.randn(9)\n",
        "params.requires_grad = True\n",
        "opt = optim.Adam([params], lr=1e-2)\n",
        "\n",
        "\n",
        "max_epoch = 15\n",
        "max_step = 30\n",
        "batch_size = 10\n",
        "\n",
        "encoded_dataset = list(zip(*[encode_game(game) for game in dataset]))\n",
        "encoded_dataset_val = list(zip(*[encode_game(game) for game in dataset_val]))\n",
        "\n",
        "\n",
        "def accuracy(p, x_val, y_val):\n",
        "    with torch.no_grad():\n",
        "        y_val = torch.tensor(y_val)\n",
        "        y_out = torch.stack([torch.hstack(circuit(x, p)) for x in x_val])\n",
        "        acc = torch.sum(torch.argmax(y_out, axis=1) == torch.argmax(y_val, axis=1))\n",
        "        return acc / len(x_val)\n",
        "\n",
        "\n",
        "print(f\"accuracy without training = {accuracy(params, *encoded_dataset_val)}\")\n",
        "\n",
        "x_dataset = torch.stack(encoded_dataset[0])\n",
        "y_dataset = torch.tensor(encoded_dataset[1], requires_grad=False)\n",
        "\n",
        "saved_costs_sym = []\n",
        "saved_accs_sym = []\n",
        "for epoch in range(max_epoch):\n",
        "    rand_idx = torch.randperm(len(x_dataset))\n",
        "    # Shuffled dataset\n",
        "    x_dataset = x_dataset[rand_idx]\n",
        "    y_dataset = y_dataset[rand_idx]\n",
        "\n",
        "    costs = []\n",
        "\n",
        "    for step in range(max_step):\n",
        "        x_batch = x_dataset[step * batch_size : (step + 1) * batch_size]\n",
        "        y_batch = y_dataset[step * batch_size : (step + 1) * batch_size]\n",
        "\n",
        "        def opt_func():\n",
        "            opt.zero_grad()\n",
        "            loss = cost_function(params, x_batch, y_batch)\n",
        "            costs.append(loss.item())\n",
        "            loss.backward()\n",
        "            return loss\n",
        "\n",
        "        opt.step(opt_func)\n",
        "\n",
        "    cost = np.mean(costs)\n",
        "    saved_costs_sym.append(cost)\n",
        "\n",
        "    if (epoch + 1) % 1 == 0:\n",
        "        # Compute validation accuracy\n",
        "        acc_val = accuracy(params, *encoded_dataset_val)\n",
        "        saved_accs_sym.append(acc_val)\n",
        "\n",
        "        res = [epoch + 1, cost, acc_val]\n",
        "        print(\"Epoch: {:2d} | Loss: {:3f} | Validation accuracy: {:3f}\".format(*res))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "z9SOd6lQPtCK"
      },
      "source": [
        "Now we train the non-symmetry preserving circuit.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 35,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 0
        },
        "id": "THRXOBEUPtCK",
        "outputId": "33cfe0bf-aff1-4a48-8063-294bd339b26b"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "accuracy without training = 0.22499999403953552\n",
            "Epoch:  1 | Loss: 2.999871 | Validation accuracy: 0.266667\n",
            "Epoch:  2 | Loss: 2.847525 | Validation accuracy: 0.481667\n",
            "Epoch:  3 | Loss: 2.723434 | Validation accuracy: 0.528333\n",
            "Epoch:  4 | Loss: 2.678260 | Validation accuracy: 0.538333\n",
            "Epoch:  5 | Loss: 2.656077 | Validation accuracy: 0.556667\n",
            "Epoch:  6 | Loss: 2.639426 | Validation accuracy: 0.558333\n",
            "Epoch:  7 | Loss: 2.628386 | Validation accuracy: 0.531667\n",
            "Epoch:  8 | Loss: 2.619402 | Validation accuracy: 0.520000\n",
            "Epoch:  9 | Loss: 2.613256 | Validation accuracy: 0.526667\n",
            "Epoch: 10 | Loss: 2.607706 | Validation accuracy: 0.533333\n",
            "Epoch: 11 | Loss: 2.606545 | Validation accuracy: 0.546667\n",
            "Epoch: 12 | Loss: 2.603332 | Validation accuracy: 0.546667\n",
            "Epoch: 13 | Loss: 2.598157 | Validation accuracy: 0.535000\n",
            "Epoch: 14 | Loss: 2.603129 | Validation accuracy: 0.525000\n",
            "Epoch: 15 | Loss: 2.596617 | Validation accuracy: 0.516667\n"
          ]
        }
      ],
      "source": [
        "params = 0.01 * torch.randn(34)\n",
        "params.requires_grad = True\n",
        "opt = optim.Adam([params], lr=1e-2)\n",
        "\n",
        "# calculate mean square error for this classification problem\n",
        "\n",
        "\n",
        "def cost_function_no_sym(params, input, target):\n",
        "    output = torch.stack([torch.hstack(circuit_no_sym(x, params)) for x in input])\n",
        "    vec = output - target\n",
        "    sum_sqr = torch.sum(vec * vec, dim=1)\n",
        "    return torch.mean(sum_sqr)\n",
        "\n",
        "\n",
        "max_epoch = 15\n",
        "max_step = 30\n",
        "batch_size = 15\n",
        "\n",
        "encoded_dataset = list(zip(*[encode_game(game) for game in dataset]))\n",
        "encoded_dataset_val = list(zip(*[encode_game(game) for game in dataset_val]))\n",
        "\n",
        "\n",
        "def accuracy_no_sym(p, x_val, y_val):\n",
        "    with torch.no_grad():\n",
        "        y_val = torch.tensor(y_val)\n",
        "        y_out = torch.stack([torch.hstack(circuit_no_sym(x, p)) for x in x_val])\n",
        "        acc = torch.sum(torch.argmax(y_out, axis=1) == torch.argmax(y_val, axis=1))\n",
        "        return acc / len(x_val)\n",
        "\n",
        "\n",
        "print(f\"accuracy without training = {accuracy_no_sym(params, *encoded_dataset_val)}\")\n",
        "\n",
        "\n",
        "x_dataset = torch.stack(encoded_dataset[0])\n",
        "y_dataset = torch.tensor(encoded_dataset[1], requires_grad=False)\n",
        "\n",
        "saved_costs = []\n",
        "saved_accs = []\n",
        "for epoch in range(max_epoch):\n",
        "    rand_idx = torch.randperm(len(x_dataset))\n",
        "    # Shuffled dataset\n",
        "    x_dataset = x_dataset[rand_idx]\n",
        "    y_dataset = y_dataset[rand_idx]\n",
        "\n",
        "    costs = []\n",
        "\n",
        "    for step in range(max_step):\n",
        "        x_batch = x_dataset[step * batch_size : (step + 1) * batch_size]\n",
        "        y_batch = y_dataset[step * batch_size : (step + 1) * batch_size]\n",
        "\n",
        "        def opt_func():\n",
        "            opt.zero_grad()\n",
        "            loss = cost_function_no_sym(params, x_batch, y_batch)\n",
        "            costs.append(loss.item())\n",
        "            loss.backward()\n",
        "            return loss\n",
        "\n",
        "        opt.step(opt_func)\n",
        "\n",
        "    cost = np.mean(costs)\n",
        "    saved_costs.append(costs)\n",
        "\n",
        "    if (epoch + 1) % 1 == 0:\n",
        "        # Compute validation accuracy\n",
        "        acc_val = accuracy_no_sym(params, *encoded_dataset_val)\n",
        "        saved_accs.append(acc_val)\n",
        "\n",
        "        res = [epoch + 1, cost, acc_val]\n",
        "        print(\"Epoch: {:2d} | Loss: {:3f} | Validation accuracy: {:3f}\".format(*res))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "8ujgVimaPtCK"
      },
      "source": [
        "Finally let\\'s plot the results and see how the two training regimes\n",
        "differ.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 36,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 472
        },
        "id": "GeF6cgOLPtCK",
        "outputId": "d86f0edd-9852-479e-e4ff-dbbb0373099c"
      },
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 640x480 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDL0lEQVR4nO3dd1yV5fsH8M9h7yEbRIaSk6GouHFguLUs0fw5cPU1TQ1tWLnSxFFqjjQtV+XImZaZhiNNHLn3wIEoQ1C2Ms65f388cfQIKIdxDng+79frecl55vUc6pyL+7nu+5YJIQSIiIiIdIietgMgIiIi0jQmQERERKRzmAARERGRzmECRERERDqHCRARERHpHCZAREREpHOYABEREZHOYQJEREREOocJEBEREekcJkBEOuL27duQyWRYvXq1ct3UqVMhk8lKdLxMJsPUqVPLNaa2bduibdu25XpOKpkDBw5AJpPhwIED2g6FSCuYABFVQj169ICZmRkyMjKK3ad///4wMjJCSkqKBiNT36VLlzB16lTcvn1b26EQESkxASKqhPr374/Hjx9j27ZtRW7Pzs7Gr7/+ik6dOsHOzq7U1/n888/x+PHjUh9fEpcuXcK0adOKTID27NmDPXv2VOj1qWht2rTB48eP0aZNG22HQqQVTICIKqEePXrA0tIS69atK3L7r7/+iqysLPTv379M1zEwMICJiUmZzlEWRkZGMDIy0tr1q4qsrKxyP6eenh5MTEygp8evAdJN/C+fqBIyNTXFm2++iaioKCQlJRXavm7dOlhaWqJHjx54+PAhJkyYAF9fX1hYWMDKygqdO3fG2bNnX3qdomqAcnJy8MEHH8DBwUF5jbi4uELH3rlzB++99x5q164NU1NT2NnZ4e2331Zp6Vm9ejXefvttAEC7du0gk8lU6k6KqgFKSkrC0KFD4eTkBBMTE/j7+2PNmjUq+xTUM3311VdYvnw5atasCWNjYzRp0gQnTpx46X2r8549efIEU6dOxWuvvQYTExO4uLjgzTffRExMjHIfhUKBb775Br6+vjAxMYGDgwM6deqEf//9VyXeZ+uvCjxfW1XwO7l06RLeeecd2NraolWrVgCAc+fOYfDgwfD29oaJiQmcnZ0xZMiQIh+D3rt3D0OHDoWrqyuMjY3h5eWFkSNHIjc3F0DxNUDHjh1Dp06dYG1tDTMzMwQHB+Off/5R2ScjIwPjxo2Dp6cnjI2N4ejoiI4dO+LUqVMvfe+JKgsDbQdAREXr378/1qxZg19++QWjR49Wrn/48CH+/PNP9OvXD6amprh48SK2b9+Ot99+G15eXkhMTMR3332H4OBgXLp0Ca6urmpdd9iwYfjpp5/wzjvvoEWLFti3bx+6du1aaL8TJ07gyJEj6Nu3L6pXr47bt29j6dKlaNu2LS5dugQzMzO0adMGY8aMwcKFC/Hpp5+ibt26AKD893mPHz9G27ZtcePGDYwePRpeXl7YtGkTBg8ejNTUVIwdO1Zl/3Xr1iEjIwPvvvsuZDIZ5syZgzfffBM3b96EoaFhsfd48+bNEr1ncrkc3bp1Q1RUFPr27YuxY8ciIyMDe/fuxYULF1CzZk0AwNChQ7F69Wp07twZw4YNQ35+Pg4dOoSjR4+icePGar3/Bd5++234+Phg5syZEEIAAPbu3YubN28iPDwczs7OuHjxIpYvX46LFy/i6NGjymT2/v37aNq0KVJTUzFixAjUqVMH9+7dw+bNm5GdnV1sq9u+ffvQuXNnBAYGYsqUKdDT08OqVavQvn17HDp0CE2bNgUA/O9//8PmzZsxevRo1KtXDykpKTh8+DAuX76MRo0alep+iTROEFGllJ+fL1xcXETz5s1V1i9btkwAEH/++acQQognT54IuVyuss+tW7eEsbGx+OKLL1TWARCrVq1SrpsyZYp49mPgzJkzAoB47733VM73zjvvCABiypQpynXZ2dmFYo6OjhYAxNq1a5XrNm3aJACI/fv3F9o/ODhYBAcHK18vWLBAABA//fSTcl1ubq5o3ry5sLCwEOnp6Sr3YmdnJx4+fKjc99dffxUAxM6dOwtd61klfc9WrlwpAIh58+YVOodCoRBCCLFv3z4BQIwZM6bYfYp67ws8/74W/E769etXaN+i3vP169cLAOLvv/9Wrhs4cKDQ09MTJ06cKDam/fv3q/xeFAqF8PHxEaGhocp9Cq7p5eUlOnbsqFxnbW0tRo0aVejcRFUJH4ERVVL6+vro27cvoqOjVR4rrVu3Dk5OTujQoQMAwNjYWFnHIZfLkZKSAgsLC9SuXVvtRxK7du0CAIwZM0Zl/bhx4wrta2pqqvw5Ly8PKSkpqFWrFmxsbEr9KGTXrl1wdnZGv379lOsMDQ0xZswYZGZm4uDBgyr7h4WFwdbWVvm6devWAKQWnhcp6Xu2ZcsW2Nvb4/333y90joLWli1btkAmk2HKlCnF7lMa//vf/wqte/Y9f/LkCZKTk9GsWTMAUMatUCiwfft2dO/evcjWp+JiOnPmDK5fv4533nkHKSkpSE5ORnJyMrKystChQwf8/fffUCgUAAAbGxscO3YM9+/fL/X9EWkbEyCiSqygyLmgGDouLg6HDh1C3759oa+vD0D6wps/fz58fHxgbGwMe3t7ODg44Ny5c0hLS1Prenfu3IGenp7y0U6B2rVrF9r38ePHmDx5Mtzd3VWum5qaqvZ1n72+j49PocLcgkdmd+7cUVlfo0YNldcFydCjR49eeJ2SvmcxMTGoXbs2DAyKrxaIiYmBq6srqlWr9vIbVIOXl1ehdQ8fPsTYsWPh5OQEU1NTODg4KPcriPvBgwdIT09HgwYN1Lre9evXAQCDBg2Cg4ODyvL9998jJydHeY05c+bgwoULcHd3R9OmTTF16tSXJp1ElQ1rgIgqscDAQNSpUwfr16/Hp59+ivXr10MIodL7a+bMmZg0aRKGDBmC6dOno1q1atDT08O4ceOUf7FXhPfffx+rVq3CuHHj0Lx5c1hbW0Mmk6Fv374Vet1nFSSBzxP/1cwUR9PvWXGtLnK5vNhjnm3tKdCnTx8cOXIEH374IQICAmBhYQGFQoFOnTqVOe6C4+fOnYuAgIAi97GwsFDG0bp1a2zbtg179uzB3LlzMXv2bGzduhWdO3cuUxxEmsIEiKiS69+/PyZNmoRz585h3bp18PHxQZMmTZTbN2/ejHbt2uGHH35QOS41NRX29vZqXcvDwwMKhULZ8lHg6tWrhfbdvHkzBg0ahK+//lq57smTJ0hNTVXZT53HQB4eHjh37hwUCoVKK9CVK1eU28tDSd+zmjVr4tixY8jLyyu2qLpmzZr4888/8fDhw2JbgQpapp5/b55v0XqRR48eISoqCtOmTcPkyZOV6wtabgo4ODjAysoKFy5cKPG5AShb/aysrBASEvLS/V1cXPDee+/hvffeQ1JSEho1aoQvv/ySCRBVGXwERlTJFbT2TJ48GWfOnCk09o++vn6hFo9Nmzbh3r17al+r4Mtr4cKFKusXLFhQaN+irrto0aJCrRrm5uYACn/5F6VLly5ISEjAxo0blevy8/OxaNEiWFhYIDg4uCS38VIlfc969+6N5ORkLF68uNA5Co7v3bs3hBCYNm1asftYWVnB3t4ef//9t8r2b7/9Vq2Ynz1nged/N3p6eujVqxd27typ7IZfVEzPCwwMRM2aNfHVV18hMzOz0PYHDx4AkFqtnn/E6ejoCFdXV+Tk5JT4foi0jS1ARJWcl5cXWrRogV9//RUACiVA3bp1wxdffIHw8HC0aNEC58+fx88//wxvb2+1rxUQEIB+/frh22+/RVpaGlq0aIGoqCjcuHGj0L7dunXDjz/+CGtra9SrVw/R0dH466+/Co1MHRAQAH19fcyePRtpaWkwNjZG+/bt4ejoWOicI0aMwHfffYfBgwfj5MmT8PT0xObNm/HPP/9gwYIFsLS0VPueilLS92zgwIFYu3YtIiIicPz4cbRu3RpZWVn466+/8N5776Fnz55o164dBgwYgIULF+L69evKx1GHDh1Cu3btlEMYDBs2DLNmzcKwYcPQuHFj/P3337h27VqJY7ayskKbNm0wZ84c5OXlwc3NDXv27MGtW7cK7Ttz5kzs2bMHwcHBGDFiBOrWrYv4+Hhs2rQJhw8fho2NTaFj9PT08P3336Nz586oX78+wsPD4ebmhnv37mH//v2wsrLCzp07kZGRgerVq+Ott96Cv78/LCws8Ndff+HEiRMqrYFElZ62up8RUcktWbJEABBNmzYttO3Jkydi/PjxwsXFRZiamoqWLVuK6OjoQl3MS9INXgghHj9+LMaMGSPs7OyEubm56N69u7h7926h7tqPHj0S4eHhwt7eXlhYWIjQ0FBx5coV4eHhIQYNGqRyzhUrVghvb2+hr6+v0vX6+RiFECIxMVF5XiMjI+Hr61uo+3jBvcydO7fQ+/F8nEUp6XsmhNQN/LPPPhNeXl7C0NBQODs7i7feekvExMQo98nPzxdz584VderUEUZGRsLBwUF07txZnDx5UuU8Q4cOFdbW1sLS0lL06dNHJCUlFdsN/sGDB4XijouLE2+88YawsbER1tbW4u233xb3798v8p7v3LkjBg4cKBwcHISxsbHw9vYWo0aNEjk5OUKIwt3gC5w+fVq8+eabws7OThgbGwsPDw/Rp08fERUVJYQQIicnR3z44YfC399fWFpaCnNzc+Hv7y++/fbbF77nRJWNTIiXVAsSERERvWJYA0REREQ6hwkQERER6RwmQERERKRzmAARERGRzmECRERERDqHCRARERHpHA6EWASFQoH79+/D0tKyTLM5ExERkeYIIZCRkQFXV9dCkyo/jwlQEe7fvw93d3dth0FERESlcPfuXVSvXv2F+zABKkLBcPt3796FlZWVlqMhIiKikkhPT4e7u3uJps3RegK0ZMkSzJ07FwkJCfD398eiRYvQtGnTYvdPTU3FZ599hq1bt+Lhw4fw8PDAggUL0KVLl1Kf83kFj72srKyYABEREVUxJSlf0WoR9MaNGxEREYEpU6bg1KlT8Pf3R2hoKJKSkorcPzc3Fx07dsTt27exefNmXL16FStWrICbm1upz0lERES6R6tzgQUFBaFJkyZYvHgxAKn42N3dHe+//z4++eSTQvsvW7YMc+fOxZUrV2BoaFgu5yxKeno6rK2tkZaWxhYgIiKiKkKd72+ttQDl5ubi5MmTCAkJeRqMnh5CQkIQHR1d5DE7duxA8+bNMWrUKDg5OaFBgwaYOXMm5HJ5qc8JADk5OUhPT1dZiIiI6NWltQQoOTkZcrkcTk5OKuudnJyQkJBQ5DE3b97E5s2bIZfLsWvXLkyaNAlff/01ZsyYUepzAkBkZCSsra2VC3uAERERvdqq1ECICoUCjo6OWL58OQIDAxEWFobPPvsMy5YtK9N5J06ciLS0NOVy9+7dcoqYiIiIKiOt9QKzt7eHvr4+EhMTVdYnJibC2dm5yGNcXFxgaGgIfX195bq6desiISEBubm5pTonABgbG8PY2LgMd0NERERVidZagIyMjBAYGIioqCjlOoVCgaioKDRv3rzIY1q2bIkbN25AoVAo1127dg0uLi4wMjIq1TmJiIhI92j1EVhERARWrFiBNWvW4PLlyxg5ciSysrIQHh4OABg4cCAmTpyo3H/kyJF4+PAhxo4di2vXruH333/HzJkzMWrUqBKfk4iIiEirAyGGhYXhwYMHmDx5MhISEhAQEIDdu3cri5hjY2NV5vJwd3fHn3/+iQ8++AB+fn5wc3PD2LFj8fHHH5f4nERERERaHQeosuI4QERERFVPlRgHiIiIiEhbmAARERGRztH6ZKhEpFkZGdK/FhZACeYLJCJ6JTEBItIhCxcCEyYAeXmAiQng6FiyxcEBMDLSdvREROWHCRCRjli6FBg79unrJ0+A2FhpKQkbm5InTLa2gB4fsBNRJcYEiEgHrFwJvPee9PNHHwGTJgEPHgBJSS9fHjwA5HIgNVVarl17+fX09aVWo+ISpE6dADe3irxjIqIXYwJE9Ir76Sdg2DDp57FjgVmzpNofCwvAy+vlxysUwKNHJUuWkpKkJEkuBxISpKUotrbAH38AQUHldptERGphAkT0Ctu0CRg0CBAC+N//gPnz1S981tMD7OykpW7dl++fm1t061LBuqNHgcuXgZAQYOdOoG3bUt0aEVGZMAEiekX9+ivwzjtSC054OLBkiWZ6fRkZSY+3invElZkJ9OwJ7NsHdO4MbN4MdO1a8XERET2LZYpEr6Bdu4C33wby84H+/YEVKypPUbKFBfD770D37lIhdq9ewMaN2o6KSDOEAOLigPPngcRE6f9R0g62ABG9Yv76C3jzTamr+1tvAatXS0XJlYmJCbBli/R4bv16oF8/qWVo6FBtR0ZUvjIygH//BY4de7rExz/dLpNJj5dL2sPSyorjd5UXJkBEr5C//wZ69ABycqR/160DDCrp/+WGhsCPP0otQitWSIXaGRnAuHHajozKIivr5YXyKSlA9epAgwZPl9q1AWNjbUdfNvn5wKVLqsnOxYtSq8+z9PWlYSUePpS2JSdLy6VLL7+GkZF643eZmFTIrb4SOBlqETgZKlVF0dHA669LLSmdOgHbt1eNLxQhpK75X30lvZ42Teqmz79yK4e8POnLuaS9ALOzS3cdfX3gtddUk6IGDYCaNStfC2aBuDjVZOfkSSkBfF6NGkDTplKvx6AgIDAQMDOTEqaUlJK/t5mZ6sdoZVU4KaosY3U1aQK0alW+51Tn+5sJUBGYAFFV8++/QIcOQHq69O/OnYCpqbajKjkhgC+/lBIfABg/Hpg7l0lQRUlLkx7DlORL99Ej9c//slHGbWyAO3eACxeeLmlpRZ/L2BioV+9pQlS/vvRvjRqa/e8jM7Pwo6z79wvvZ2kpfbEXJDtNmwIuLuUTQ3Z2ycfvSkqq/PVFEycCM2eW7znV+f6upI3jRFRSZ89KLT/p6UDr1lLvr6qU/ADSF9nnn0tfHuPGAV9/Ld3P0qWV96//qigzExgzBli1Sr3j9PRePLDl84u5uXrJiRDAvXuqCdHFi9Ly+DFw+rS0PMvS8mky9Ozi6Fj2xEguL/pRlkJR+H3x9X2a7AQFAXXqVNx/s2ZmgIeHtLyMENKYXM8OQVHWxLa8+ftr9/psASoCW4Coqrh4URpHJzkZaNYM2LNH+mKoylauBIYPl75s+vYF1q6V6oWobE6flt7PgpG8ra1LntBUq6adxyVyOXD7tmpidOECcOVK8a0b9vaFk6L69aVWp+LcuwccP/402fn336IfN1WvrprsBAZKyR5VHnwEVkZMgKgquHYNaNNG6kobGCj1/nrRh3xV8ssvUvf9/Hypu/wvv7CYs7SEkCbB/egjaZBKNzfg55+B4GBtR1Z6ubnA9euFE6OYmMIFxwWeLbquV09qFSlIeO7dK7y/ubnqo6ygIMDVtWLvi8qOCVAZMQGiyi4mRvoCu3cP8PMD9u+X/kp/lezaBfTuLY0V1L699GjPwkLbUVUtDx5Ig2D+/rv0ukcPqYXNzk67cVWU7GxplPHnE6O4uBcfp6cntRI9m+zUq8fHr1URE6AyYgJEldmdO1LLT2ys9CF94IBUn/EqOngQ6NZNehzRrJmUFNnaajuqqmH/fqkVLT5eKiT+6itg1CjdLCxPTZUeFz9bW2Rt/TTZadyYyfWrgglQGTEBosrq3j2p5ScmBvDxkRKE8uphUlkdPy5163/0SGrt2rMHcHLSdlSVV34+MHWq1LtGCKkod8MG7RecEmmCOt/flWRwfCJ6mYQEqYt7TIw0i/u+fa9+8gNI3YgPHpSSnnPnnrZ+UWF37kgJ8pdfSsnP0KFSQS+TH6LCmAARVQHJydLs6VevSuOf7NsnFXXqCl9f4NAh6d6vXZO6+1+/ru2oKpctW4CAAODIEWnwuw0bgO+/Zy8louIwASKq5B4+BDp2lOoWXF2BqCjA01PbUWmejw9w+LA0WnBsrJQEnT+v7ai0LzsbePddad631FSppuX0aSAsTNuREVVuTICIKrG0NKn+5cwZ6RFQVBRQq5a2o9Ied3dpvjN/f6n7f3Cw1I1ZV124ID0iXL5cev3xx1JLmbe3duMiqgqYABFVUhkZQJcuwIkTUrflv/6SClp1nZOT1MOpWTOpMDokROoJp0uEAJYtk8apuXgRcHaWisNnzeKgkUQlxQSIqBLKzpYGADxyRBrccO9eaQA3ktjaSu9J+/ZSF/nOnZ+OdfOqe/QIePttYORIaYykTp2k6VA6dtR2ZERVC+cCI6pknjwBevWSej5ZWkp/2TdsWHg/uUKOrLwsZOVmqfWvXCHHO77voGWNlhq/t/JkYSElPWFhwI4d0nv200+vdu3L4cPAO+8Ad+9KLT2RkcAHH2h/Vm+iqojjABWB4wBRRcmV5+Lf+/8i7UlaoeQkOy8b6U+ysHlHFmLjs6BvmoUmLbJgZFF0MpMjzyl1HDLIMKHFBHzR7guYGFTtOSby8oDBg4F166RB/laskLp/v0rkcmlcn6lTpTnSataUenk1bqztyIgqFw6EWEZMgKi8ZeZmYvnJ5ZgXPQ/3MoqYeKgMZJDB3Mgc5obmxf/7zM83U29iw4UNAIAGjg3w4xs/IsA5oFxj0jS5HHjvvafFwPPnS7PKvwru3QP+7/+e1jn17w98+63U1Z2IVKnz/c1HYEQVKCU7BYuOL8Ki44vw8PFDAICdqR3crd1VkhJTA3McO2SOmMvm0FeYY/A75gio/5Kk5r9/TQxMIFNzfoN+Dfph+M7huJB0AU1WNMHU4Kn4uNXHMNCrmh8J+vpSUbCVlTTlwwcfAOnpwKRJVXvqh507pbm8UlKk8Xy+/RYYOFDbURG9IkQlsHjxYuHh4SGMjY1F06ZNxbFjx4rdd9WqVQKAymJsbKyyz6BBgwrtExoaWuJ40tLSBACRlpZW6nsi3XY37a74YPcHwvxLc4GpEJgKUWthLbHi5ArxJO+Jyr5yuRADBggBCGFoKMRvv2kmxqTMJPHGhjeU8QWtCBJXk69q5uIVRKEQYvp06b0EhBg/XlpX1Tx+LMSYMU/vo2FDIa5W7V8NkUao8/2t9dK5jRs3IiIiAlOmTMGpU6fg7++P0NBQJCUlFXuMlZUV4uPjlcudO3cK7dOpUyeVfdavX1+Rt0FVhBBSD6uKci3lGobtGAbvb7wx/+h8ZOVloaFzQ2x8ayOujLqCYY2GwdjAWLm/QiENYvfjj1IrxsaNQNeuFRffsxzMHbClzxas7bUWVsZWOHbvGAKWBWDJ8SVQCIVmgihnMhnw+efAggXS66+/lt5fuVyrYanl6lWgeXNg4ULp9bhxQHS0NAAkEZUjDSRkL9S0aVMxatQo5Wu5XC5cXV1FZGRkkfuvWrVKWFtbv/CcgwYNEj179ix1TGwBevUoFEL8/rsQ9etLf1FXqyZEYKAQb70lxIcfCvHtt0L88YcQV65If32r6+T9k+KtX94SsqkyZYtK8Kpgsfv6bqEopglCoRBi1CgpHj09ITZsKONNlkFsaqzosKaDMvaOazuKu2l3tRdQOfjhB+l9BYTo21eI3FxtR/RiCoUQK1cKYWYmxWxvr7nWQKJXhTrf31p94J+bm4uTJ09i4sSJynV6enoICQlBdHR0scdlZmbCw8MDCoUCjRo1wsyZM1G/fn2VfQ4cOABHR0fY2tqiffv2mDFjBuzs7Io8X05ODnJynvaoSU9PL+OdUWVy9iwwfrw0inKBhw+l5eTJoo9xcZEmHC1qqV4dMDAAhBA4eOcgIg9HYk/MHuWx3V/rjomtJqK5e/NiYxICmDABWLJEarVYvVq73bfdrd2xZ8AefHviW3y09yPsvbkXDb5tgMVdFqO/b3+1a4wqgyFDpK7y/ftLPaaysoBffgFMKmGnt/R04H//Awoaqtu1k7r0u7pqNy6iV5lWe4Hdv38fbm5uOHLkCJo3f/pl8dFHH+HgwYM4VsQY99HR0bh+/Tr8/PyQlpaGr776Cn///TcuXryI6v/NDrlhwwaYmZnBy8sLMTEx+PTTT2FhYYHo6Gjo6+sXOufUqVMxbdq0QuvZC6xqu39fehyyerWUcBgZAWPHSsvDh8CtW0UvmZkvPq++gQJ2LX7Dk8aRSLc6CgDQgz5CXPrik5Yfo2093xcW3goBfPaZNIYLIHXbHjasfO65PFxNvoqB2wfi+L3jAIDedXtjWbdlsDez13JkpbNrF9C7tzS+Uvv2wK+/SolRZXH8ONCvH3DzpvQY9IsvpCktivioIqKXqDLd4EuTAD0vLy8PdevWRb9+/TB9+vQi97l58yZq1qyJv/76Cx06dCi0vagWIHd3dyZAVVRWFjB3rrQU1Pv07SslHC+bRFQIqcdNUYnRzdt5uGWxAfJmswHHi9IB+cbAqaHAkQlAqhcAwNRUuk5xLUgLFwJTpkiHL14MjBpVIW9DmeQr8jHr8CxMOzgN+Yp8OJk7YUX3Feheu7u2QyuVgweBbt2k5LZZMykpsrXVbkwKhdRj7bPPgPx8wMNDGsuoRQvtxkVUlVWZbvD29vbQ19dHYmKiyvrExEQ4OzuX6ByGhoZo2LAhbty4Uew+3t7esLe3x40bN4pMgIyNjWFsbFzEkVSVyOXAmjVSq098vLSuRQtg3jxphuySkMkAe3tpadJEWvc47zFWnl6JuUfmQp4mFdyb61uhrcV7qJs2Dg8cnHDLT0qS4uKAx4+By5el5UW+/rpyJj8AYKBngM/bfI4uPl0wYNsAXHpwCT029MDQhkMxL3QerIyr1h8GwcHSI9BOnYCjR4EaNYBq1aSu5eW5lHQersREqTv7nv+enL71ltQSaGNTYW+B1skVchy8cxAbLmzA79d/R3ZeBfZGKAGfaj7o9lo3dH+tOwKcA6rkY14qG60mQEZGRggMDERUVBR69eoFAFAoFIiKisLo0aNLdA65XI7z58+jS5cuxe4TFxeHlJQUuLi4lEfYVAnt3SvV1Jw7J7329gZmz5YefZT2cy3tSRq+PfEtFhxbgKQsqVeio7kjxgWNw3tN3oO1iXWhY3JzgdjY4h+vPXggPdqYMQOIiCjt3WpOI5dGODniJD7f9znmRc/DD6d/QNStKKzuuRrBnsHaDk8tTZtKM8l36iQNLviyR52lYWhYskRp61YgKUmqR/rmG2D48Ko9XlFxFEKB6LvR2HBhAzZd2oTErMSXH6QhJ+6fwIn7JzDlwBRUt6qObj7d0L12d7T3al/lR0enktH6SNAbN27EoEGD8N1336Fp06ZYsGABfvnlF1y5cgVOTk4YOHAg3NzcEPlfwcQXX3yBZs2aoVatWkhNTcXcuXOxfft2nDx5EvXq1UNmZiamTZuG3r17w9nZGTExMfjoo4+QkZGB8+fPl6ilhyNBVx0XLwIffgj88Yf02sZGGvxu1CigtI16iZmJmH90Ppb+uxTpOVJBvIe1Bz5s8SGGNBwCU0PTUsebmSk97qiKf+n/fedvDNo+CLdTb0MGGT5o9gG+7PBllfuyePIEuHFDelRaXouiFKMGNGggFWc/13+jyhNC4FT8KWy4sAEbL27E3fS7ym3VTKuhd93e6FO/D2pY19BajPmKfETfjcbOazux9+ZeldYoM0MzdPTuiO6vdUfX17rC2aJkTyOocqgyNUAFFi9ejLlz5yIhIQEBAQFYuHAhgv57ZtG2bVt4enpi9erVAIAPPvgAW7duRUJCAmxtbREYGIgZM2ag4X+zRT5+/Bi9evXC6dOnkZqaCldXV7z++uuYPn06nJycShQPE6DKLzFRqqNZsUL68jEwkJKeSZOAYjr7vdStR7cw98hcrDy9UjnPVn2H+vik1ScIqx8GQ/0SPt94hWXkZCDizwh8f/p7AEA9h3pY22stAl0DtRyZ9ggB5ORI9WYlTZiqVZNafUxLn0tXOheTLmLDhQ3YcHEDbjx8WpJgaWSJXnV6oW+DvgjxDoGRvpEWoyzscd5j7L+9Hzuv7sRv139DXHqcyvambk3R/bXu6PZaN/g7+fNRWSVX5RKgyoYJUOX1+LE0z1Nk5NNHGG++CcyaBfj4lO6cF5IuYNbhWdhwYQPkQhoxr1n1ZpjYaiK6vdYNejKtjxda6fx27TcM2zEMiVmJMNAzwOQ2kzGx9cQqO5UGlc6Nhzew8cJGbLi4AReSLijXmxqYonvt7uhbvy86+3SuMq2EQgicSTiDndd2Yue1nfj3/r8q292t3JV1Q+282lWZ+9IlTIDKiAlQ5aNQAD//DHz6qVRoDEhFyl9/DbRuXbpzHrl7BJGHI/Hbtd+U616v+TomtpqIYI9g/qX3EsnZyRj5+0hsvrQZgPSX8tpea1HbvraWI6OKdDftLn65+As2XNygkiAY6hmis09n9K3fF91rd4eFUSUaa6CU7mfcx+/XfsfOazvx182/8Dj/sXKbuaE5Otb871GZT1c4WZTsCQNVLCZAZcQEqHI5eFAayLBg0MIaNaQWoL59AT01G2eEEPgz5k9EHo7E33f+BiDNpv5WvbfwccuPdfpRTmkIIbD+wnqM2jUKqU9SYWJggtkhszG66Wi2nL1CEjMTsenSJmy8uBGHYw8r1+vL9NHBuwP61u+LXnV6wdZUy2MLVKDHeY+x79Y+ZevQ/Yz7ym0yyJSPyrrX7g5fR1/+AaUlTIDKiAlQ5XDtGvDRR9LAdQBgaSm1AI0dq17tRFx6HPbf2o99t/ch6maUsijTUM8QA/0H4qOWH+E1O060VBZx6XEY8usQ7L25FwDQ3qs9VvVcpdVCVyqbh48fYuvlrdhwYQP2396vnB9OBhnaeLRBWP0w9K7XG47mjlqOVPOEEDidcBo7r0rJ0Ml41SHla1jXUNYNtfNspzL/H1UsJkBlxARIu5KTpdFwly6Vekzp60sTWk6ZAjiW4LP2QdYD7L+9X5n0XEu5prLd3NAcIwJHIKJ5BKpbVa+gu9A9Qggs/XcpJuyZgMf5j2FlbIVFnRdhgN8A/jVcRWTkZODXq79iw4UN+DPmT+Qr8pXbgtyC0LdBX7xd7224WblpMcrK537Gffx27Tflo7In+U+U28wNzfF6zdeVvcp0MWHUJCZAZcQESDuePAEWLQK+/BJIS5PWdesGzJkD1K1b/HGpT1Lx952/se/WPuy7tQ/nk86rbNeT6SHQJRDtPNuhvVd7tKrRCuZG5hV4J7rtesp1DNw+EEfjpGlC3qjzBr7r9h0czB20HBkVJTsvG7uu71IOUPjsl7e/kz/6NuiLPvX7wNvWW4tRVh3ZedmIuhmFndd24rdrvyE+M165TQYZgqoHKeuGfJ18+ai4nDEBKiMmQJolhDRJ5SefALdvS+sCAqRpAooYuBtZuVn45+4/yoTnZPxJZfN8AV9HX7T3ao/2Xu3RxqMNbExsKvo26Bn5inzM/WcuphyYgjxFHhzMHLCi+wr0rNNT26ERgFx5LvbE7MGGCxvw69VfkZn7dFTI2na10bdBX4TVD0Ndhxf85UEvpRAKnI4/rawbOhV/SmW7vZm98g+z9l7t4VPNh62lZcQEqIyYAGnOkSNSgfNRqbEArq5SC9CAAU8ng8zJz8Gxe8eUCc/RuKPIU+SpnMenmo/yQ6StZ1s2M1cSZxLOYMC2Acou0oMDBmNB6IIiR9GmipGRk4FLDy7hQtIFaXlwAf/e/xepT1KV+3hYe6Bvg77o26Avx7qpQPfS7ykflR24fQBZeVkq290s3dDOqx3ae0qfZR42HlqKtOpiAlRGTIAqXkwMMHEisGmT9NrcXCp4Hj8eMDbNx6n4U8qE53DsYZXup4A0HkcH7w5o59kO7Tzbwd3aXQt3QSWRk5+DyfsnY+6RuRAQqGFdA7M6zEIXny5MhMpRTn4OriRfUUl0LiRdwO3U20Xu72LhgrD6YQhrEIYgtyAmPRqWK8/FiXsnpM+52/tw5O4R5MpzVfbxtvVWJkPtvNpxVOoSYAJURkyAKs6jR9I8WIsWAXl5Ujf28CEK9Bt7AeczpYTn4J2DyikoCjiaO0otPP99GHjbevMDu4o5HHsYg7YPws1HNwFIE64GewQruw6zxqRk8hX5iHkYUyjRuZ5yXTmQ5/OcLZzRwLEBGjg0QAPHBvBz8kMjl0bQ19PXcPRUnMd5j3Hk7hFlQnTi3olCv896DvWUn4HBnsGoZlpNS9FWXkyAyogJUMWIjZVmZ793TwB211G3yz64t9mHU4/2Izk7WWVfGxMbtPVsq/yfvZ5DPSY8r4DM3EzMOjwLmy5tKtQ7r55DPSkZeq07mlVvpvNfzgqhQGxarDLRufjgIi4kXcDlB5eVU7U8z8bEBr6OvlKy49gA9R3qo75jfdib2Ws4eiqr9Jx0HI49rGwJP5NwBgJPv65lkKGhS0PlZ2Rrj9avxOCTZcUEqIyYAJW/tDSgZSsFLjp9Dv1GayE3v6ey3dzQHK09Wiv/Zw5wDtD5L8BX3bWUa8p6iEN3Dqn8tWtvZo8uPl3Q/bXueL3m67AyfnX/PxRCIDEr8WmLzjMJz7PFyc8yMzRDfYf6ykSnYHGxcOEfCq+olOwUHLxzUJkQXU6+rLLdQM8ATd2aKj9Dm7s318mpOpgAlREToPKVlwd07QrsVXwKtI4EABjrG6OFewvp2bZnOzRxa1LpJkkkzXn0+BF239iNndd24o8bf6gU6BrqGaKtZ1vlwHJetl7aC7SMHj1+pGzJeXZJeZxS5P6GeoaoY1+nUKLjaePJ7tM6Lj4jHvtv71cmRLdSb6lsN9Y3RssaLZUJUWPXxjoxoTMToDJiAlR+hABGjAC+P/Yz0Pv/AACLOy/GkIZDYGr4Ck2FTeUmT56Hf+7+oxxl9/rD6yrb6zvUV9YNBbkFVcqWwqzcLFxOvlwo0bmXca/I/WWQoVa1WoUSHZ9qPjrxpUVld+vRLZWE6NnxhwDAwsgCbTzaKBMif2f/VzKJZgJURkyAys+sWcDExceA8GDAIAeftPwEkSGR2g6LqpBrKdeUydDh2MMqj8oczBxUHpVZGltqNLZceS6upVwrlOjcfHRTpV7jWe5W7qjvWF+lVqeufV3+QUDlRgiBqylXlcnQ/tv78fDxQ5V9bExs0NStKYLcgqSletArUSvGBKiMmACVj40bgb4j7gIjmgAWiehZuye2hm19Jf/qIM14+Pjh00dl1/9AWk6acpuRvpHyUVn317qX6xgqcoUct1JvFUp0rqZcVZku4lmO5o4qPa8aODZAPYd67PpPGqcQCpxPPK/sYXbw9kFk5GYU2s/b1lslIQpwDqhydURMgMqICVDZHTkCtAvNQm7/VoDLGfg5+eGfIf+wlwKVmzx5Hg7HHlaOsnvj4Q2V7b6OvspHZU3dmpYo8RZC4F7GvUKJzqUHlwqNRVXAytiqUKJT37E+B+OkSitfkY+zCWdx/N5xHLt3DMfuHcOV5CuF9jPUM0SAc8DTlqLqQZV+tGomQGXEBKhsYmKAoGYKpLR/G6i3FY7mjjg+7DhHNaUKU9Dkv/PqTvx2/Tccjj2sMj2Ko7kjuvp0RffXuqNjzY6wMLLAg6wHRRYkP9uq9CwTAxPUc6hXKNmpblW9Un8hEJVE6pNUnLh3QpkQHYs7hgfZDwrtZ2tiq5IQNXVrWqkenTEBKiMmQKWXkiKN9XPNbRIQPANG+kbYP2g/Wri30HZopEMePn6IP67/gZ3XdmL3jd2FHpXZmNggKSupyGMN9Azwmt1rhRIdb1vvSllwTVQRhBC4nXpbmQwdu3cMp+JPFTkGVU3bmgiqHqR8fBbgHABjA2MtRM0EqMyYAJVOTg7QsSNw6NF64K13AABreq3BQP+BWo6MdFmePA+HYg8pC6ljHsUAkHpeedt6qwwa2MCxAV6ze01rH95ElVmuPBfnEs8pE6Jj944VGtAUkP7ICHAOQJBbkLK1qFa1WhppKWUCVEZMgNQnBPB//wesO3gcCG8DGOTgoxYfYXbH2doOjUhJCIFrKdeQkZuBuvZ1YW5kru2QiKq0R48fqdQSHYs7VuS4VtVMq6n0Omvq1hR2ZnblHg8ToDJiAqS+yZOB6d/EAcObAJYJ6P5ad2wL28ZHBkREOkQIgZuPbqo8OjudcLrQRK8AMKbpGHzT+Ztyvb46398G5Xpl0kmrVwPTZ2UB4T0BywT4Ovri5zd/ZvJDRKRjZDIZalariZrVauIdX6kUIleei7MJZ1Vaia4/vK71Ud3ZAlQEtgCV3L59wOuhCsjfCAPqb4aDmQOODz8OTxtPbYdGRESV1MPHDyGDDLamtuV6XrYAkUZcvgy8+SYgbzUNqL8ZhnqG2Bq2lckPERG9UDXTatoOARySl0olMRHo0gVIq74RaPsFAOC7bt+hVY1WWo6MiIjo5ZgAkdqys4EePYDbuScge2MwAGB88/EIbxiu3cCIiIhKiAkQqUWhAAYMAI5fvgfZOz0hDJ6gq09XzA5hd3ciIqo6mACRWj76CNi6M1tKfiziUd+hPtb1XsceX0REVKUwAaISW7oU+PprAfQMh3A5CTtTO+zotwNWxuwpR0REVQsTICqRXbuA0aMBBH8BNPhF2ePL29Zb26ERERGpjQkQvdTZs0BYGKCoswloNxUAsLTrUrTxaKPdwIiIiEqpUiRAS5YsgaenJ0xMTBAUFITjx48Xu+/q1ashk8lUFhMTE5V9hBCYPHkyXFxcYGpqipCQEFy/fr2ib+OVFBcHdO0KZFqehF7vQQCAD5p9gKGNhmo5MiIiotLTegK0ceNGREREYMqUKTh16hT8/f0RGhqKpKSkYo+xsrJCfHy8crlz547K9jlz5mDhwoVYtmwZjh07BnNzc4SGhuLJkycVfTuvlIwMoFs34F76fRgM6AGF/mN0rtUZczvO1XZoREREZaL1BGjevHkYPnw4wsPDUa9ePSxbtgxmZmZYuXJlscfIZDI4OzsrFycnJ+U2IQQWLFiAzz//HD179oSfnx/Wrl2L+/fvY/v27Rq4o1dDfr702Ovsxccw+L9eyDe7j7r2dbG+93r2+CIioipPqwlQbm4uTp48iZCQEOU6PT09hISEIDo6utjjMjMz4eHhAXd3d/Ts2RMXL15Ubrt16xYSEhJUzmltbY2goKBiz5mTk4P09HSVRZcJAYwZA/zxh4D+m0OQ73QC1UyrYWe/nbA2sdZ2eERERGWm1QQoOTkZcrlcpQUHAJycnJCQkFDkMbVr18bKlSvx66+/4qeffoJCoUCLFi0QFxcHAMrj1DlnZGQkrK2tlYu7u3tZb61KmzdP6vKO4BmQ19sAAz0DbOmzBTWr1dR2aEREROVC64/A1NW8eXMMHDgQAQEBCA4OxtatW+Hg4IDvvvuu1OecOHEi0tLSlMvdu3fLMeKqZetW4MMPAdTdArSbDAD4tsu3aOvZVqtxERERlSetJkD29vbQ19dHYmKiyvrExEQ4OzuX6ByGhoZo2LAhbty4AQDK49Q5p7GxMaysrFQWXXT8OPB//wcI51Mw6DMAADA2aCyGBw7XcmRERETlS6sJkJGREQIDAxEVFaVcp1AoEBUVhebNm5foHHK5HOfPn4eLiwsAwMvLC87OzirnTE9Px7Fjx0p8Tl106xbQvTvwWD8eJuE9kC97jNCaofjq9a+0HRoREVG5M9B2ABERERg0aBAaN26Mpk2bYsGCBcjKykJ4uDSz+MCBA+Hm5obIyEgAwBdffIFmzZqhVq1aSE1Nxdy5c3Hnzh0MGzYMgNRDbNy4cZgxYwZ8fHzg5eWFSZMmwdXVFb169dLWbVZqjx5JY/0kPXwMs/d6IdvoHurY18HGtzbCQE/r/4kQERGVO61/u4WFheHBgweYPHkyEhISEBAQgN27dyuLmGNjY6Gn97Sh6tGjRxg+fDgSEhJga2uLwMBAHDlyBPXq1VPu89FHHyErKwsjRoxAamoqWrVqhd27dxcaMJGA3Fygd2/g8mUB0/8biuxqx9nji4iIXnkyIYTQdhCVTXp6OqytrZGWlvZK1wMJAYSHA2vWAEYdvkRu689hoGeAPf+3B+282mk7PCIiIrWo8/1d5XqBUfmZMUNKfvTqbUNu688BAIs7L2byQ0RErzwmQDrq55+ByZMBOJ+BQZ//AwC83/R9vNv4Xe0GRkREpAFMgHTQoUPAkCEALBJgOaIHcpGN12u+jnmh87QdGhERkUYwAdIx164BvXoBuYonqPbeG8jQu4vadrXZ44uIiHQKEyAdkpUFdOkCPHwoYBc+HA/NjsLWxBY7++2EjYmNtsMjIiLSGCZAOmTfPiAmBrDoNBspbj9BX6aPzX02w8fOR9uhERERaRQTIB1y8yaA2r8iM+hTAMCizovQ3qu9doMiIiLSAiZAOuTCnXtA7/6ATGBUk1EY2WSktkMiIiLSilJVvcbGxuLOnTvIzs6Gg4MD6tevD2Nj4/KOjcrZqUf7AOssuOn7YUGnBdoOh4iISGtKnADdvn0bS5cuxYYNGxAXF4dnB5A2MjJC69atMWLECPTu3Vtl6gqqPGJzzwEAGtq1YY8vIiLSaSXKVMaMGQN/f3/cunULM2bMwKVLl5CWlobc3FwkJCRg165daNWqFSZPngw/Pz+cOHGiouMmNQkBPDKSEqAm7n5ajoaIiEi7StQMYG5ujps3b8LOzq7QNkdHR7Rv3x7t27fHlClTsHv3bty9exdNmjQp92Cp9B49AuR2UgLUtp6/lqMhIiLSLk6GWoRXcTLUvUeS8PpeJ0DIkPlpBsyNzLUdEhERUblS5/u7TIUgycnJOHbsGORyOZo0aQIXF5eynI4q0KFrUuuPSXYtJj9ERKTzSp0AbdmyBUOHDsVrr72GvLw8XL16FUuWLEF4eHh5xkfl5PR9KQFyULD+h4iIqMTdtTIzM1VeT5s2DcePH8fx48dx+vRpbNq0CZ999lm5B0jl43q6lAB5mbL+h4iIqMQJUGBgIH799VflawMDAyQlJSlfJyYmwsjIqHyjo3JzX3EWAODryBYgIiKiEj8C+/PPPzFq1CisXr0aS5YswTfffIOwsDDI5XLk5+dDT08Pq1evrsBQqbTy5HnINLkEAAjyYgJERERU4gTI09MTv//+O9avX4/g4GCMGTMGN27cwI0bNyCXy1GnTh2YmJhUZKxUSleTr0Ho5wI5lmhWx0Pb4RAREWmd2kM29+vXDydOnMDZs2fRtm1bKBQKBAQEMPmpxA5dl+p/kOQLTw+O0k1ERKRWL7Bdu3bh8uXL8Pf3x/fff4+DBw+if//+6Ny5M7744guYmppWVJxUBkdipPofi0x/GBpqORgiIqJKoMTNAePHj0d4eDhOnDiBd999F9OnT0dwcDBOnToFExMTNGzYEH/88UdFxkqldD5JagFylrH+h4iICFBjJGg7Ozvs2bMHgYGBePjwIZo1a4Zr164pt1+6dAnvvvsuDh06VGHBasqrNhK09bTqSMc9dL7/D3Z910Lb4RAREVUIdb6/S9wCZG5ujlu3bgEA7t69W6jmp169eq9E8vOqSclOQTruAQACXH21HA0REVHlUOIEKDIyEgMHDoSrqyuCg4Mxffr0ioyLysn5pPPSDw+9UcfLUrvBEBERVRIlLoLu378/OnXqhJs3b8LHxwc2NjYVGBaVl7MJUgE0Ev3g5aXdWIiIiCoLtXqB2dnZwc7OrqJioQpwNuG/LvCJfvD01GooRERElUaJHoH973//Q1xcXIlOuHHjRvz8889lCorKz8k4KQHST/aDq6uWgyEiIqokStQC5ODggPr166Nly5bo3r07GjduDFdXV5iYmODRo0e4dOkSDh8+jA0bNsDV1RXLly+v6LipBOQKOa48ugAAcDP0g76+lgMiIiKqJEqUAE2fPh2jR4/G999/j2+//RaXLl1S2W5paYmQkBAsX74cnTp1qpBASX3XH15HruIJkGuG1+xrajscIiKiSqPEvcCcnJzw2Wef4fz580hOTsapU6fwzz//4OrVq3j06BE2b95c6uRnyZIl8PT0hImJCYKCgnD8+PESHbdhwwbIZDL06tVLZf3gwYMhk8lUFl1MzM4lPp0Cw8uTU2AQEREVUKsIuoCtrS1sbW3LJYCNGzciIiICy5YtQ1BQEBYsWIDQ0FBcvXoVjo6OxR53+/ZtTJgwAa1bty5ye6dOnbBq1Srla2Nj43KJtypRJkCJfvBqrt1YiIiIKhOtNwvMmzcPw4cPR3h4OOrVq4dly5bBzMwMK1euLPYYuVyO/v37Y9q0afD29i5yH2NjYzg7OyuX8krYqhKVBIhd4ImIiJS0mgDl5ubi5MmTCAkJUa7T09NDSEgIoqOjiz3uiy++gKOjI4YOHVrsPgcOHICjoyNq166NkSNHIiUlpdh9c3JykJ6errK8CpQJUII/EyAiIqJnaDUBSk5Ohlwuh5OTk8p6JycnJCQkFHnM4cOH8cMPP2DFihXFnrdTp05Yu3YtoqKiMHv2bBw8eBCdO3eGXC4vcv/IyEhYW1srF3d399LfVCWR+iQVd9LuSC+SfDkGEBER0TNKVQOkLRkZGRgwYABWrFgBe3v7Yvfr27ev8mdfX1/4+fmhZs2aOHDgADp06FBo/4kTJyIiIkL5Oj09vconQecT/5sCI7UGzPRs8IJyKiIiIp2jdgI0ZcoUDBkyBB4eHmW+uL29PfT19ZGYmKiyPjExEc7OzoX2j4mJwe3bt9G9e3flOoVCAQAwMDDA1atXUbNm4e7e3t7esLe3x40bN4pMgIyNjV+5Iuln6388PQGZTKvhEBERVSpqPwL79ddfUbNmTXTo0AHr1q1DTk5OqS9uZGSEwMBAREVFKdcpFApERUWhefPC3Zbq1KmD8+fP48yZM8qlR48eaNeuHc6cOVNsq01cXBxSUlLg4uJS6lirGhZAExERFU/tBOjMmTM4ceIE6tevj7Fjx8LZ2RkjR47EiRMnShVAREQEVqxYgTVr1uDy5csYOXIksrKyEB4eDgAYOHAgJk6cCAAwMTFBgwYNVBYbGxtYWlqiQYMGMDIyQmZmJj788EMcPXoUt2/fRlRUFHr27IlatWohNDS0VDFWRWcTCyZB9Wf9DxER0XNKVQTdsGFDLFy4EPfv38cPP/yAuLg4tGzZEn5+fvjmm2+QlpZW4nOFhYXhq6++wuTJkxEQEIAzZ85g9+7dysLo2NhYxMfHl/h8+vr6OHfuHHr06IHXXnsNQ4cORWBgIA4dOvTKPeYqjkIocD7pvxogtgAREREVIhNCiNIenJubi23btmHlypXYt28fWrRogfv37yMxMRErVqxAWFhYecaqMenp6bC2tkZaWhqsrKy0HY7abjy8AZ9FPpDJTSC+zMCWTQZ4801tR0VERFSx1Pn+LlUL0MmTJzF69Gi4uLjggw8+QMOGDXH58mUcPHgQ169fx5dffokxY8aUKngqu4L6H/2U+oDCgC1AREREz1E7AfL19UWzZs1w69Yt/PDDD7h79y5mzZqFWrVqKffp168fHjx4UK6BUsmdTZDqf/Lj/AGACRAREdFz1O4G36dPHwwZMgRubm7F7mNvb6/snk6ady7paQ8wa2vAxkar4RAREVU6aidAkyZNqog4qByxCzwREdGLqf0IrHfv3pg9e3ah9XPmzMHbb79dLkFR6WXkZODmo5vSiyRfJkBERERFUDsB+vvvv9GlS5dC6zt37oy///67XIKi0ruQdAEAYK5wBbLtmQAREREVQe0EKDMzE0ZGRoXWGxoavjKzqFdlBQMgWmRKBdAcBJGIiKiwUvUC27hxY6H1GzZsQL169colKCq9gvofkeAHgD3AiIiIilKqIug333wTMTExaN++PQAgKioK69evx6ZNm8o9QFJPQQKUGcMEiIiIqDhqJ0Ddu3fH9u3bMXPmTGzevBmmpqbw8/PDX3/9heDg4IqIkUpICKFMgLJvSQkQH4EREREVpnYCBABdu3ZF165dyzsWKqPbqbeRkZsBQz0j5CXXhoMDYG6u7aiIiIgqn1JNhUGVU0HrT3WjeoDCkI+/iIiIiqF2C5BcLsf8+fPxyy+/IDY2Frm5uSrbHz58WG7BkXoKEiC7fD/cAut/iIiIiqN2C9C0adMwb948hIWFIS0tDREREXjzzTehp6eHqVOnVkCIVFIFU2AYp7EAmoiI6EXUToB+/vlnrFixAuPHj4eBgQH69euH77//HpMnT8bRo0crIkYqoYIWoLw4FkATERG9iNoJUEJCAnx9fQEAFhYWSEtLAwB069YNv//+e/lGRyWWlZuF6ynXAQCpVzgLPBER0YuonQBVr14d8fHxAICaNWtiz549AIATJ07A2Ni4fKOjErv44CIEBJzMnRB31REAEyAiIqLiqJ0AvfHGG4iKigIAvP/++5g0aRJ8fHwwcOBADBkypNwDpJIpePxVx9YP2dmATAbUqKHloIiIiCoptXuBzZo1S/lzWFgYPDw8cOTIEfj4+KB79+7lGhyVXEEC5GYg1f+4uQFskCMiIiqaWglQXl4e3n33XUyaNAle/z1fadasGZo1a1YhwVHJFUyCavOEk6ASERG9jFqPwAwNDbFly5aKioVK6dkpMPST2QWeiIjoZdSuAerVqxe2b99eAaFQacWlxyH1SSoM9AyQHVsHABMgIiKiF1G7BsjHxwdffPEF/vnnHwQGBsL8ucmmxowZU27BUckoC6Dt6yD2kFT4wwSIiIioeGonQD/88ANsbGxw8uRJnDx5UmWbTCZjAqQFBfU//k7+OHZLWscaICIiouKpnQDdunWrIuKgMihoAWrg4Idf7kjr2AJERERUPM4G/wpQdoE39ENeHmBgAFSvruWgiIiIKjG1W4BeNtjhypUrSx0Mqe9J/hNcTbkKALDIlHqA1agB6OtrMyoiIqLKTe0E6NGjRyqv8/LycOHCBaSmpqJ9+/blFhiVzKUHl6AQCtiZ2iH9ngsA1v8QERG9jNoJ0LZt2wqtUygUGDlyJGrWrFkuQVHJnU34rwDa2R+3b8kAsP6HiIjoZcqlBkhPTw8RERGYP39+eZyO1FBQ/+Pn6Ifbt6V1TICIiIherNyKoGNiYpCfn1+qY5csWQJPT0+YmJggKCgIx48fL9FxGzZsgEwmQ69evVTWCyEwefJkuLi4wNTUFCEhIbh+/XqpYqvsziX9lwA5+aGggx4TICIiohdT+xFYRESEymshBOLj4/H7779j0KBBagewceNGREREYNmyZQgKCsKCBQsQGhqKq1evwtHRsdjjbt++jQkTJqB169aFts2ZMwcLFy7EmjVr4OXlhUmTJiE0NBSXLl2CiYmJ2jFWVkII5SOwZxMg1gARERG9mEwIIdQ5oF27diqv9fT04ODggPbt22PIkCEwMFAvpwoKCkKTJk2wePFiAFI9kbu7O95//3188sknRR4jl8vRpk0bDBkyBIcOHUJqaqpyeg4hBFxdXTF+/HhMmDABAJCWlgYnJyesXr0affv2fWlM6enpsLa2RlpaGqysrNS6H026n3EfbvPcoCfTQ+qHWbCxMIFCAdy/D7i4aDs6IiIizVLn+1vtFqD9+/eXOrDn5ebm4uTJk5g4caJynZ6eHkJCQhAdHV3scV988QUcHR0xdOhQHDp0SGXbrVu3kJCQgJCQEOU6a2trBAUFITo6ukQJUFVRUP9T2642HsRLyY+JCeDsrOXAiIiIKrlSjQSdn58PHx8flfXXr1+HoaEhPNV4/pKcnAy5XA4nJyeV9U5OTrhy5UqRxxw+fBg//PADzpw5U+T2hIQE5TmeP2fBtufl5OQgJydH+To9Pb2kt6BVygLo5x5/yWTai4mIiKgqULsIevDgwThy5Eih9ceOHcPgwYPLI6ZiZWRkYMCAAVixYgXs7e3L7byRkZGwtrZWLu7u7uV27opUVALEAmgiIqKXUzsBOn36NFq2bFlofbNmzYptlSmOvb099PX1kZiYqLI+MTERzkU8x4mJicHt27fRvXt3GBgYwMDAAGvXrsWOHTtgYGCAmJgY5XElPScATJw4EWlpacrl7t27at2HthTXAkREREQvpnYCJJPJkJGRUWh9Wloa5HK5WucyMjJCYGAgoqKilOsUCgWioqLQvHnzQvvXqVMH58+fx5kzZ5RLjx490K5dO5w5cwbu7u7w8vKCs7OzyjnT09Nx7NixIs8JAMbGxrCyslJZKruc/BxcTr4MQJoFni1AREREJad2DVCbNm0QGRmJ9evXQ/+/CafkcjkiIyPRqlUrtQOIiIjAoEGD0LhxYzRt2hQLFixAVlYWwsPDAQADBw6Em5sbIiMjYWJiggYNGqgcb2NjAwAq68eNG4cZM2bAx8dH2Q3e1dW10HhBVdmV5CvIV+TDxsQG1a2qcxBEIiIiNaidAM2ePRtt2rRB7dq1lWPwHDp0COnp6di3b5/aAYSFheHBgweYPHkyEhISEBAQgN27dyuLmGNjY6Gnp15D1UcffYSsrCyMGDECqampaNWqFXbv3v1KjQH07OMvmUzGFiAiIiI1qD0OEADcv38fixcvxtmzZ2Fqago/Pz+MHj0a1apVq4gYNa4qjAP04Z4P8VX0VxjdZDTmtFsEMzNpfXIyYGen3diIiIi0oULHAQIAV1dXzJw5s1TBUfk4m/jMJKi3pXWWlsArkoMSERFVKLWLoFetWoVNmzYVWr9p0yasWbOmXIKil3v2Ediz9T8cA4iIiOjl1E6AIiMjixyDx9HRka1CGpKYmYjErETIIEN9h/qs/yEiIlKT2glQbGwsvIr4pvXw8EBsbGy5BEUvdj7pPACgVrVaMDcy5xhAREREalI7AXJ0dMS5c+cKrT979izsWH2rEc/OAA+ALUBERERqUjsB6tevH8aMGYP9+/dDLpdDLpdj3759GDt27Cs10Whldi5JSkD9nfwBgGMAERERqUntXmDTp0/H7du30aFDBxgYSIcrFAoMHDiQNUAa8mwBNMAWICIiInWVahwgALh27ZpyHCBfX194eHiUd2xaU5nHAcqT58Ei0gK58lzcHHMTdvpesLaWtqWnS13hiYiIdFGFjwMEAK+99hpee+210h5OpXQt5Rpy5bmwNLKEh40Hzv9XjmVnx+SHiIiopEqVAMXFxWHHjh2IjY1Fbm6uyrZ58+aVS2BUtIIBEP2c/KAn02P9DxERUSmonQBFRUWhR48e8Pb2xpUrV9CgQQPcvn0bQgg0atSoImKkZ7D+h4iIqOzU7gU2ceJETJgwAefPn4eJiQm2bNmCu3fvIjg4GG+//XZFxEjPYAJERERUdmonQJcvX8bAgQMBAAYGBnj8+DEsLCzwxRdfYPbs2eUeIKkqLgHiIIhEREQlp3YCZG5urqz7cXFxQUxMjHJbcnJy+UVGhaRkp+Bexj0AgK+jLwC2ABEREZWG2jVAzZo1w+HDh1G3bl106dIF48ePx/nz57F161Y0a9asImKk/xS0/njbesPS2BJCcBBEIiKi0lA7AZo3bx4yMzMBANOmTUNmZiY2btwIHx8f9gCrYM8//kpJAf77VeAVGoaJiIiowqmdAHl7eyt/Njc3x7Jly8o1ICqeMgFyVK3/cXEBTEy0FRUREVHVo3YNEGlPwRxg7AFGRERUNkyAqoh8RT4uJF0AAPg7cxJUIiKismACVEXceHgDT/KfwMzQDN620mNItgARERGVDhOgKqKg/sfX0Rd6MunXxjGAiIiISocJUBXxfA8wgC1AREREpaV2LzC5XI7Vq1cjKioKSUlJUCgUKtv37dtXbsHRUwWToPo7SfU/CgVw5460jQkQERGRetROgMaOHYvVq1eja9euaNCgAWQyWUXERc95vgUoIQHIyQH09QF3d21GRkREVPWonQBt2LABv/zyC7p06VIR8VARUp+kIjYtFgDg66Q6BUb16oCB2r9FIiIi3aZ2DZCRkRFq1apVEbFQMc4nngcA1LCuARsTGwCs/yEiIioLtROg8ePH45tvvoEQoiLioSIU1P88WwDNMYCIiIhKT+2HJ4cPH8b+/fvxxx9/oH79+jA0NFTZvnXr1nILjiQF9T8FBdAAW4CIiIjKQu0EyMbGBm+88UZFxELFYBd4IiKi8qV2ArRq1aqKiIOKoRAKnE+SaoCKSoA4CCIREZH6St1/6MGDB7h69SoAoHbt2nBwcCi3oOipm49uIjsvGyYGJqhVTSo+z88H7t6VtrMFiIiISH1qF0FnZWVhyJAhcHFxQZs2bdCmTRu4urpi6NChyM7OLlUQS5YsgaenJ0xMTBAUFITjx48Xu+/WrVvRuHFj2NjYwNzcHAEBAfjxxx9V9hk8eDBkMpnK0qlTp1LFpm1nE6QC6AaODWCgJ+WrcXGAXA4YGwMuLtqMjoiIqGpSOwGKiIjAwYMHsXPnTqSmpiI1NRW//vorDh48iPHjx6sdwMaNGxEREYEpU6bg1KlT8Pf3R2hoKJKSkorcv1q1avjss88QHR2Nc+fOITw8HOHh4fjzzz9V9uvUqRPi4+OVy/r169WOrTJQ1v84Fn785eEB6HEyEyIiIrWp/fW5ZcsW/PDDD+jcuTOsrKxgZWWFLl26YMWKFdi8ebPaAcybNw/Dhw9HeHg46tWrh2XLlsHMzAwrV64scv+2bdvijTfeQN26dVGzZk2MHTsWfn5+OHz4sMp+xsbGcHZ2Vi62trZqx1YZnEsqvgCa9T9ERESlo3YClJ2dDScnp0LrHR0d1X4Elpubi5MnTyIkJORpQHp6CAkJQXR09EuPF0IgKioKV69eRZs2bVS2HThwAI6OjqhduzZGjhyJlJSUYs+Tk5OD9PR0laWyYA8wIiKi8qd2AtS8eXNMmTIFT548Ua57/Pgxpk2bhubNm6t1ruTkZMjl8kIJlZOTExISEoo9Li0tDRYWFjAyMkLXrl2xaNEidOzYUbm9U6dOWLt2LaKiojB79mwcPHgQnTt3hlwuL/J8kZGRsLa2Vi7ulWRyrfScdNx8dBMAB0EkIiIqT2r3Avvmm28QGhqK6tWrw99fGpjv7NmzMDExKVSHU1EsLS1x5swZZGZmIioqChEREfD29kbbtm0BAH379lXu6+vrCz8/P9SsWRMHDhxAhw4dCp1v4sSJiIiIUL5OT0+vFEnQhaQLAAA3SzfYmdkp17MFiIiIqGzUToAaNGiA69ev4+eff8aVK1cAAP369UP//v1hamqq1rns7e2hr6+PxMRElfWJiYlwdnYu9jg9PT3lfGQBAQG4fPkyIiMjlQnQ87y9vWFvb48bN24UmQAZGxvD2NhYrdg1oajHXwBrgIiIiMqqVOMAmZmZYfjw4WW+uJGREQIDAxEVFYVevXoBABQKBaKiojB69OgSn0ehUCAnJ6fY7XFxcUhJSYFLFeszXlQC9OQJcP++9DNbgIiIiEqnRAnQjh070LlzZxgaGmLHjh0v3LdHjx5qBRAREYFBgwahcePGaNq0KRYsWICsrCyEh4cDAAYOHAg3NzdERkYCkOp1GjdujJo1ayInJwe7du3Cjz/+iKVLlwIAMjMzMW3aNPTu3RvOzs6IiYnBRx99hFq1aiE0NFSt2LStqElQY2Olf83NAXt7bURFRERU9ZUoAerVqxcSEhLg6OiobKkpikwmK7bQuDhhYWF48OABJk+ejISEBAQEBGD37t3KwujY2FjoPTPYTVZWFt577z3ExcXB1NQUderUwU8//YSwsDAAgL6+Ps6dO4c1a9YgNTUVrq6ueP311zF9+vRK+ZirOAqhwPlEaQqM4iZBlcm0ERkREVHVJxNCCG0HUdmkp6fD2toaaWlpsLKy0koMtx7dgvdCbxjpGyFzYiYM9Q0BAMuWASNHAt26ATt3aiU0IiKiSkmd72+1u8GvXbu2yHqb3NxcrF27Vt3TUTEK6n/qOdRTJj8Ae4ARERGVB7UToPDwcKSlpRVan5GRoazbobIrrgcYxwAiIiIqO7UTICEEZEUUn8TFxcHa2rpcgqJnCqAdi+4CzwSIiIio9ErcDb5hw4bKmdU7dOgAA4Onh8rlcty6davKzrheGRW0APk7+6usZwJERERUdiVOgAp6f505cwahoaGwsLBQbjMyMoKnpyd69+5d7gHqoqzcLNx4eAOA6iOwzEwgOVn6mYMgEhERlV6JE6ApU6YAADw9PREWFgYTE5MKC0rXXXxwEQICTuZOcDR3VK4vqP+xtQX4tJGIiKj01B4JetCgQRURBz3jbELhARABPv4iIiIqL2onQHK5HPPnz8cvv/yC2NhY5Obmqmx/+PBhuQWnq5T1P06s/yEiIqoIavcCmzZtGubNm4ewsDCkpaUhIiICb775JvT09DB16tQKCFH3nEviJKhEREQVSe0E6Oeff8aKFSswfvx4GBgYoF+/fvj+++8xefJkHD16tCJi1ClCiJfOAs8WICIiorJROwFKSEiAr68vAMDCwkI5KGK3bt3w+++/l290OiguPQ6pT1JhoGeAOvZ1VLZxEEQiIqLyoXYCVL16dcTHxwMAatasiT179gAATpw4UaUmG62sCgZArGNfB8YGT99PIdgCREREVF7UToDeeOMNREVFAQDef/99TJo0CT4+Phg4cCCGDBlS7gHqmuIKoB89AtLTpZ89PDQdFRER0atF7V5gs2bNUv4cFhaGGjVqIDo6Gj4+PujevXu5BqeLXlb/4+QEmJlpOioiIqJXi9oJ0POaN2+O5s2bl0csBE6CSkREpAklSoB27NhR4hP26NGj1MHousd5j3E15SoA9gAjIiKqSCVKgArmASsgk8kghCi0DpAGSqTSufTgEhRCAXsze7hYuKhs4xhARERE5adERdAKhUK57NmzBwEBAfjjjz+QmpqK1NRU/PHHH2jUqBF2795d0fG+0p59/FWQUBZgCxAREVH5UbsGaNy4cVi2bBlatWqlXBcaGgozMzOMGDECly9fLtcAdYkyAXL0K7SNNUBERETlR+1u8DExMbCxsSm03traGrcLvqWpVArGAHq+/kcIJkBERETlSe0EqEmTJoiIiEBiYqJyXWJiIj788EM0bdq0XIPTJS+aAiMxEXj8GNDTA9zdtREdERHRq0XtBGjlypWIj49HjRo1UKtWLdSqVQs1atTAvXv38MMPP1REjDohPjMeKY9ToCfTQ33H+irbCup/3NwAIyMtBEdERPSKUbsGqFatWjh37hz27t2LK1euAADq1q2LkJCQQoW7VHIFrT+17WrDxMBEZRsffxEREZWvUg2EKJPJ8Prrr+P1118v73h0VnGPvwD2ACMiIipvJUqAFi5ciBEjRsDExAQLFy584b5jxowpl8B0TXEF0AATICIiovJWogRo/vz56N+/P0xMTDB//vxi95PJZEyASqm4SVABDoJIRERU3kqUAN0q+AZ+7mcqHzn5ObiSLNVTsQWIiIio4qndC4zK35XkK8hX5MPGxAbVraqrbJPLgdhY6WcmQEREROWjRC1AERERJT7hvHnzSh2Mrnq2/uf5nnT37gH5+YChIeDqqo3oiIiIXj0lSoBOnz5dopOxG3zplKT+p0YNQF9fk1ERERG9ukqUAO3fv79Cg1iyZAnmzp2LhIQE+Pv7Y9GiRcWOKr1161bMnDkTN27cQF5eHnx8fDB+/HgMGDBAuY8QAlOmTMGKFSuQmpqKli1bYunSpfDx8anQ+ygtdoEnIiLSLK3XAG3cuBERERGYMmUKTp06BX9/f4SGhiIpKanI/atVq4bPPvsM0dHROHfuHMLDwxEeHo4///xTuc+cOXOwcOFCLFu2DMeOHYO5uTlCQ0Px5MkTTd2WWl6UAHEQRCIiovInE0IIdQ/6999/8csvvyA2Nha5ubkq27Zu3arWuYKCgtCkSRMsXrwYAKBQKODu7o73338fn3zySYnO0ahRI3Tt2hXTp0+HEAKurq4YP348JkyYAABIS0uDk5MTVq9ejb59+770fOnp6bC2tkZaWhqsrKzUuh91JWYmwvlrZ8ggQ8bEDJgbmatsHzQIWLsWmDkTmDixQkMhIiKq0tT5/la7BWjDhg1o0aIFLl++jG3btiEvLw8XL17Evn37YG1trda5cnNzcfLkSYSEhDwNSE8PISEhiI6OfunxQghERUXh6tWraNOmDQCpm35CQoLKOa2trREUFFSic2paQetPrWq1CiU/AMcAIiIiqghqT4Uxc+ZMzJ8/H6NGjYKlpSW++eYbeHl54d1334WLi4ta50pOToZcLoeTk5PKeicnJ+U8Y0VJS0uDm5sbcnJyoK+vj2+//RYdO3YEACQkJCjP8fw5C7Y9LycnBzk5OcrX6enpat1HWSgLoJ0LF0ADrAEiIiKqCGq3AMXExKBr164AACMjI2RlZUEmk+GDDz7A8uXLyz3AolhaWuLMmTM4ceIEvvzyS0RERODAgQOlPl9kZCSsra2Vi7u7e/kF+xLnkv6r/3EsXP+Tmyt1gweYABEREZUntRMgW1tbZGRkAADc3Nxw4cIFAEBqaiqys7PVOpe9vT309fWRmJiosj4xMRHOzs7FHqenp4datWohICAA48ePx1tvvYXIyEgAUB6nzjknTpyItLQ05XL37l217qMsXlQAHRsLCAGYmQGOjhoLiYiI6JWndgLUpk0b7N27FwDw9ttvY+zYsRg+fDj69euHDh06qHUuIyMjBAYGIioqSrlOoVAgKioKzZs3L/F5FAqF8hGWl5cXnJ2dVc6Znp6OY8eOFXtOY2NjWFlZqSyakCfPw6UHlwC8uAu8pyfAIZaIiIjKT4lrgC5cuIAGDRpg8eLFyu7kn332GQwNDXHkyBH07t0bn3/+udoBREREYNCgQWjcuDGaNm2KBQsWICsrC+Hh4QCAgQMHws3NTdnCExkZicaNG6NmzZrIycnBrl278OOPP2Lp0qUApMEYx40bhxkzZsDHxwdeXl6YNGkSXF1d0atXL7Xjq0hXU64iV54LSyNLeNp4FtrOAmgiIqKKUeIEyM/PD02aNMGwYcOUXcn19PRK3FW9OGFhYXjw4AEmT56MhIQEBAQEYPfu3coi5tjYWOjpPW2oysrKwnvvvYe4uDiYmpqiTp06+OmnnxAWFqbc56OPPkJWVhZGjBiB1NRUtGrVCrt374aJiUmZYi1vzz7+KmoUbY4BREREVDFKPA7QoUOHsGrVKmzevBkKhQK9e/fGsGHD0Lp164qOUeM0NQ7QJ399gtn/zMbIxiPxbddvC23v1w/YsAH46itg/PgKC4OIiOiVUCHjALVu3RorV65EfHw8Fi1ahNu3byM4OBivvfYaZs+eXWwXcyres5OgFoVd4ImIiCqG2kXQ5ubmCA8Px8GDB3Ht2jW8/fbbWLJkCWrUqIEePXpURIyvrBf1AANYA0RERFRRyjQXWK1atfDpp5/i888/h6WlJX7//ffyiuuVl5ydjPsZ9wEAvo6+hbZnZQEF06GxBYiIiKh8qT0SdIG///4bK1euxJYtW6Cnp4c+ffpg6NCh5RnbK+184nkAgLetNyyNLQttv3NH+tfaGrC11WRkRERErz61EqD79+9j9erVWL16NW7cuIEWLVpg4cKF6NOnD8zNC89jRcUr6eMvtv4QERGVvxInQJ07d8Zff/0Fe3t7DBw4EEOGDEHt2rUrMrZXmrIAuogpMADW/xAREVWkEidAhoaG2Lx5M7p16wZ9ff2KjEkncBJUIiIi7SlxArRjx46KjEOn5CvycfHBRQDFPwLjIIhEREQVp0y9wKh0bjy8gSf5T2BmaAZvW+8i92ELEBERUcVhAqQFZxOk+h9fR1/oyYr+FbAGiIiIqOIwAdKCl/UAS02VFoAJEBERUUVgAqQF55L+K4B2KroAuqD+x8EBsLDQUFBEREQ6hAmQFnAMICIiIu1iAqRhqU9SEZsWCwDwdSo8BQbABIiIiKiiMQHSsILWnxrWNWBjYlPkPiyAJiIiqlhMgDRMOQBiMfU/AMcAIiIiqmhMgDTsZfU/AB+BERERVTQmQBr2sgRICCZAREREFY0JkAbJFXKcTzoPoPgE6MEDIDsbkMmAGjU0GR0REZHuYAKkQTcf3UR2XjZMDExQq1qtIvcpaP1xdQWMjTUYHBERkQ5hAqRBBY+/Gjg2gIFe0fPQsgCaiIio4jEB0iBl/Y8jC6CJiIi0qehmCKoQb9R9A9Ym1mjg2KDYfTgGEBERUcVjAqRBAc4BCHAOeOE+bAEiIiKqeHwEVsmwBoiIiKjiMQGqRBQK4M4d6WcmQERERBWHCVAlcv8+kJsL6OsDbm7ajoaIiOjVxQSoEimo/6lRAzBgdRYREVGFYQJUibD+h4iISDOYAFUi7AFGRESkGUyAKhEmQERERJpRKRKgJUuWwNPTEyYmJggKCsLx48eL3XfFihVo3bo1bG1tYWtri5CQkEL7Dx48GDKZTGXp1KlTRd9GmXEQRCIiIs3QegK0ceNGREREYMqUKTh16hT8/f0RGhqKpKSkIvc/cOAA+vXrh/379yM6Ohru7u54/fXXce/ePZX9OnXqhPj4eOWyfv16TdxOmbAGiIiISDNkQgihzQCCgoLQpEkTLF68GACgUCjg7u6O999/H5988slLj5fL5bC1tcXixYsxcOBAAFILUGpqKrZv316qmNLT02FtbY20tDRYWVmV6hzqyssDTEyksYDu3wdcXDRyWSIioleGOt/fWm0Bys3NxcmTJxESEqJcp6enh5CQEERHR5foHNnZ2cjLy0O1atVU1h84cACOjo6oXbs2Ro4ciZSUlGLPkZOTg/T0dJVF0+7elZIfExPA2VnjlyciItIpWk2AkpOTIZfL4eTkpLLeyckJCQkJJTrHxx9/DFdXV5UkqlOnTli7di2ioqIwe/ZsHDx4EJ07d4ZcLi/yHJGRkbC2tlYu7u7upb+pUiqo//HwAGQyjV+eiIhIp1Tp4fZmzZqFDRs24MCBAzAxMVGu79u3r/JnX19f+Pn5oWbNmjhw4AA6dOhQ6DwTJ05ERESE8nV6errGkyDW/xAREWmOVluA7O3toa+vj8TERJX1iYmJcH7Jc6CvvvoKs2bNwp49e+Dn5/fCfb29vWFvb48bN24Uud3Y2BhWVlYqi6axCzwREZHmaDUBMjIyQmBgIKKiopTrFAoFoqKi0Lx582KPmzNnDqZPn47du3ejcePGL71OXFwcUlJS4FKJK4uZABEREWmO1rvBR0REYMWKFVizZg0uX76MkSNHIisrC+Hh4QCAgQMHYuLEicr9Z8+ejUmTJmHlypXw9PREQkICEhISkJmZCQDIzMzEhx9+iKNHj+L27duIiopCz549UatWLYSGhmrlHkuCYwARERFpjtZrgMLCwvDgwQNMnjwZCQkJCAgIwO7du5WF0bGxsdDTe5qnLV26FLm5uXjrrbdUzjNlyhRMnToV+vr6OHfuHNasWYPU1FS4urri9ddfx/Tp02FsbKzRe1MHW4CIiIg0R+vjAFVGmh4H6PFjwMxM+jk5GbCzq/BLEhERvXKqzDhAJLlzR/rX0hJ4bjgjIiIiqgBMgCqBZ+t/OAYQERFRxWMCVAmw/oeIiEizmABVAhwEkYiISLOYAFUCbAEiIiLSLCZAlQATICIiIs1iAlQJcBBEIiIizWICpGXp6cDDh9LPbAEiIiLSDCZAWlZQAG1nJ40DRERERBWPCZCWsf6HiIhI85gAaRnrf4iIiDSPCZCWcQwgIiIizWMCpGV8BEZERKR5BtoOQNcxASIiKh9yuRx5eXnaDoMqkKGhIfT19cvlXEyAtEgI1gAREZWVEAIJCQlITU3VdiikATY2NnB2doasjLOHMwHSopQUIDNT+pkJEBFR6RQkP46OjjAzMyvzFyNVTkIIZGdnIykpCQDg4uJSpvMxAdKiggJoFxfAxESroRARVUlyuVyZ/NjZ2Wk7HKpgpqamAICkpCQ4OjqW6XEYi6C1iPU/RERlU1DzY2ZmpuVISFMKftdlrfdiAqRFrP8hIioffOylO8rrd80ESIvYAkRERLpIJpNh+/btWo2BCZAWcRBEIiLd9eDBA4wcORI1atSAsbExnJ2dERoain/++UfboantwIEDkMlkJe6JFx8fj86dO1dsUC/BImgtYgsQEZHu6t27N3Jzc7FmzRp4e3sjMTERUVFRSElJ0XZoFSY3NxdGRkZwdnbWdihsAdIWhYItQEREuio1NRWHDh3C7Nmz0a5dO3h4eKBp06aYOHEievTogSFDhqBbt24qx+Tl5cHR0RE//PADAKBt27Z4//33MW7cONja2sLJyQkrVqxAVlYWwsPDYWlpiVq1auGPP/5QnqOgpebPP/9Ew4YNYWpqivbt2yMpKQl//PEH6tatCysrK7zzzjvIzs5WHqdQKBAZGQkvLy+YmprC398fmzdvBgDcvn0b7dq1AwDY2tpCJpNh8ODByhhHjx6NcePGwd7eHqGhoQAKPwKLi4tDv379UK1aNZibm6Nx48Y4duxYub/vz2ILkJYkJAA5OYCeHlC9urajISJ6NQgBPPO9rVFmZkBJ63MtLCxgYWGB7du3o1mzZjA2NlbZPmzYMLRp0wbx8fHK8W5+++03ZGdnIywsTLnfmjVr8NFHH+H48ePYuHEjRo4ciW3btuGNN97Ap59+ivnz52PAgAGIjY1V6Sk3depULF68GGZmZujTpw/69OkDY2NjrFu3DpmZmXjjjTewaNEifPzxxwCAyMhI/PTTT1i2bBl8fHzw999/4//+7//g4OCAVq1aYcuWLejduzeuXr0KKysrZXf1ghhHjhxZ7KO9zMxMBAcHw83NDTt27ICzszNOnToFhUJRsjeztAQVkpaWJgCItLS0CrvGP/8IAQjh4VFhlyAieuU9fvxYXLp0STx+/FgIIURmpvTZqo0lM1O92Ddv3ixsbW2FiYmJaNGihZg4caI4e/ascnu9evXE7Nmzla+7d+8uBg8erHwdHBwsWrVqpXydn58vzM3NxYABA5Tr4uPjBQARHR0thBBi//79AoD466+/lPtERkYKACImJka57t133xWhoaFCCCGePHkizMzMxJEjR1TiHzp0qOjXr5/KeR89eqSyT3BwsGjYsGGhewcgtm3bJoQQ4rvvvhOWlpYiJSXlxW/Yf57/nT9Lne9vPgLTEtb/EBHptt69e+P+/fvYsWMHOnXqhAMHDqBRo0ZYvXo1AKkVaNWqVQCAxMRE/PHHHxgyZIjKOfz8/JQ/6+vrw87ODr6+vsp1Tk5OAKAcPbmo45ycnGBmZgZvb2+VdQXH3LhxA9nZ2ejYsaOy5crCwgJr165FTEzMS+8zMDDwhdvPnDmDhg0bolq1ai89V3niIzAtYQJERFT+zMyeTjGkjWury8TEBB07dkTHjh0xadIkDBs2DFOmTMHgwYMxcOBAfPLJJ4iOjsaRI0fg5eWF1q1bqxxvaGio8lomk6msKxgz5/nHSc/vU9R5Co7J/O8N/f333+Hm5qay3/OP7opibm7+wu3PPi7TJCZAWsJBEImIyp9MBrzk+7ZSq1evnrI42M7ODr169cKqVasQHR2N8PBwrcVkbGyM2NhYBAcHF7mPkZERAGlqEnX5+fnh+++/x8OHDzXaCsQESEvYA4yISHelpKTg7bffxpAhQ+Dn5wdLS0v8+++/mDNnDnr27Kncb9iwYejWrRvkcjkGDRqklVgtLS0xYcIEfPDBB1AoFGjVqhXS0tLwzz//wMrKCoMGDYKHhwdkMhl+++03dOnSBaamprCwsCjR+fv164eZM2eiV69eiIyMhIuLC06fPg1XV1c0b968wu6LCZCW8BEYEZHusrCwQFBQEObPn4+YmBjk5eXB3d0dw4cPx6effqrcLyQkBC4uLqhfvz5cXV21Fu/06dPh4OCAyMhI3Lx5EzY2NmjUqJEyVjc3N0ybNg2ffPIJwsPDMXDgQGUt08sYGRlhz549GD9+PLp06YL8/HzUq1cPS5YsqcA7QuXoBbZ48WLh4eEhjI2NRdOmTcWxY8eK3Xf58uWiVatWwsbGRtjY2IgOHToU2l+hUIhJkyYJZ2dnYWJiIjp06CCuXbtW4ngquhdYXp4Q+vpSr4G4uAq5BBGRTnhRj6BXQUZGhrCyshJbtmzRdiiVxivTC2zjxo2IiIjAlClTcOrUKfj7+yM0NLRQxXqBAwcOoF+/fti/fz+io6Ph7u6O119/Hffu3VPuM2fOHCxcuBDLli3DsWPHYG5ujtDQUDx58kRTt/VCcXGAXA4YGQH/De9ARESkpFAokJSUhOnTp8PGxgY9evTQdkivnorIztTRtGlTMWrUKOVruVwuXF1dRWRkZImOz8/PF5aWlmLNmjVCCKn1x9nZWcydO1e5T2pqqjA2Nhbr168v0TkrugVo3z6p9cfHp0JOT0SkM17VFqBbt24JAKJ69eoqY/bQK9IClJubi5MnTyIkJES5Tk9PDyEhIYiOji7RObKzs5GXl6esHL916xYSEhJUzmltbY2goKASn7OisQCaiIhexNPTE0II3L17Fx06dNB2OK8krRZBJycnQy6XKwdqKuDk5IQrV66U6Bwff/wxXF1dlQlPQkKC8hzPn7Ng2/NycnKQk5OjfJ2enl7ieygNFkATERFpl9ZrgMpi1qxZ2LBhA7Zt2wYTE5NSnycyMhLW1tbKxd3dvRyjLIxjABEREWmXVhMge3t76OvrIzExUWV9YmIinJ2dX3jsV199hVmzZmHPnj0qQ3oXHKfOOSdOnIi0tDTlcvfu3dLcTomxBYiIiEi7tJoAGRkZITAwEFFRUcp1CoUCUVFRLxz8aM6cOZg+fTp2796Nxo0bq2zz8vKCs7OzyjnT09Nx7NixYs9pbGwMKysrlaUisQaIiIhIu7Q+EGJERAQGDRqExo0bo2nTpliwYAGysrKUQ34PHDgQbm5uiIyMBADMnj0bkydPxrp16+Dp6ams6ymYnE0mk2HcuHGYMWMGfHx84OXlhUmTJsHV1RW9evXS1m0q5eQA9+9LPzMBIiIi0g6tJ0BhYWF48OABJk+ejISEBAQEBGD37t3KIubY2Fjo6T1tqFq6dClyc3Px1ltvqZxnypQpmDp1KgDgo48+QlZWFkaMGIHU1FS0atUKu3fvLlOdUHm5cwcQQpqrxt5e29EQERHpJpkQQmg7iMomPT0d1tbWSEtLK/fHYX/+CXTqBNSvD1y4UK6nJiLSOU+ePMGtW7fg5eVVKf7Irapu374NLy8vnD59GgEBAZX63C/6navz/V2le4FVRaz/ISIiAHjw4AFGjhyJGjVqwNjYGM7OzggNDcU///wDAJDJZMqZ4an8af0RmK5hDzAiIgKA3r17Izc3F2vWrIG3tzcSExMRFRWFlJQUbYdWKrm5uTAyMtJ2GCXGFiANYwJERESpqak4dOgQZs+ejXbt2sHDwwNNmzbFxIkT0aNHD3j+N1DcG2+8AZlMpnwdExODnj17wsnJCRYWFmjSpAn++usvlXN7enpi5syZGDJkCCwtLVGjRg0sX75cZZ/jx4+jYcOGMDExQePGjXH69GmV7XK5HEOHDoWXlxdMTU1Ru3ZtfPPNNyr7DB48GL169cKXX34JV1dX1K5du0TnrizYAqRhHASRiKjiCCGQnZetlWubGZpBJpOVaN+Cnsvbt29Hs2bNYGxsrLL9xIkTcHR0xKpVq9CpUyfo6+sDADIzM9GlSxd8+eWXMDY2xtq1a9G9e3dcvXoVNWrUUB7/9ddfY/r06fj000+xefNmjBw5EsHBwahduzYyMzPRrVs3dOzYET/99BNu3bqFsWPHqlxfoVCgevXq2LRpE+zs7HDkyBGMGDECLi4u6NOnj3K/qKgoWFlZYe/evcr4XnbuyoIJkIaxBoiIqOJk52XDItJCK9fOnJgJcyPzEu1rYGCA1atXY/jw4Vi2bBkaNWqE4OBg9O3bF35+fnBwcAAA2NjYqAzi6+/vD39/f+Xr6dOnY9u2bdixYwdGjx6tXN+lSxe89957AKQpo+bPn4/9+/ejdu3aWLduHRQKBX744QeYmJigfv36iIuLw8iRI5XHGxoaYtq0acrXXl5eiI6Oxi+//KKSAJmbm+P7779XPvpavnz5S89dWfARmAZlZgIPHkg/MwEiItJtvXv3xv3797Fjxw506tQJBw4cQKNGjbB69epij8nMzMSECRNQt25d2NjYwMLCApcvX0ZsbKzKfs/OkCCTyeDs7IykpCQAwOXLl+Hn56fSg6qogYKXLFmCwMBAODg4wMLCAsuXLy90HV9fX5W6n5KeuzJgC5AGFbT+2NoC1tZaDYWI6JVkZmiGzImZWru2ukxMTNCxY0d07NgRkyZNwrBhwzBlyhQMHjy4yP0nTJiAvXv34quvvkKtWrVgamqKt956C7m5uSr7GRoaqryWyWRQKBQljmvDhg2YMGECvv76azRv3hyWlpaYO3cujh07prKfuXnJWrwqIyZAGsT6HyKiiiWTyUr8GKoyqlevnrLru6GhIeRyucr2f/75B4MHD8Ybb7wBQGoRul3w13UJ1a1bFz/++COePHmibKk5evRooeu0aNFC+RgNkAqwy+PclQUfgWkQ63+IiAgAUlJS0L59e/z00084d+4cbt26hU2bNmHOnDno2bMnAKk3V1RUFBISEvDo0SMAgI+PD7Zu3YozZ87g7NmzeOedd9Rq2QGAd955BzKZDMOHD8elS5ewa9cufPXVVyr7+Pj44N9//8Wff/6Ja9euYdKkSThx4kS5nLuyYAKkQVlZgKkpEyAiIl1nYWGBoKAgzJ8/H23atEGDBg0wadIkDB8+HIsXLwYg9eTau3cv3N3d0bBhQwDAvHnzYGtrixYtWqB79+4IDQ1Fo0aN1L72zp07cf78eTRs2BCfffYZZs+erbLPu+++izfffBNhYWEICgpCSkqKSmtQWc5dWXAqjCJU5FQYQgC5ucBzPR6JiKgUOBWG7uFUGFWUTMbkh4iISNuYABEREZHOYQJEREREOocJEBEREekcJkBERESkc5gAERFRlccOzbqjvH7XTICIiKjKKpjyITtbOzPAk+YV/K6fn+5DXZwKg4iIqix9fX3Y2NgoJ/o0MzODTCbTclRUEYQQyM7ORlJSEmxsbKCvr1+m8zEBIiKiKs3Z2RkAlEkQvdpsbGyUv/OyYAJERERVmkwmg4uLCxwdHZGXl6ftcKgCGRoalrnlpwATICIieiXo6+uX25cjvfpYBE1EREQ6hwkQERER6RwmQERERKRzWANUhIJBltLT07UcCREREZVUwfd2SQZLZAJUhIyMDACAu7u7liMhIiIidWVkZMDa2vqF+8gExw8vRKFQ4P79+7C0tCz3AbXS09Ph7u6Ou3fvwsrKqlzPXRXw/nX7/gG+B7p+/wDfA95/xd2/EAIZGRlwdXWFnt6Lq3zYAlQEPT09VK9evUKvYWVlpZP/4Rfg/ev2/QN8D3T9/gG+B7z/irn/l7X8FGARNBEREekcJkBERESkc5gAaZixsTGmTJkCY2NjbYeiFbx/3b5/gO+Brt8/wPeA91857p9F0ERERKRz2AJEREREOocJEBEREekcJkBERESkc5gAERERkc5hAqRBS5YsgaenJ0xMTBAUFITjx49rOySNiYyMRJMmTWBpaQlHR0f06tULV69e1XZYWjNr1izIZDKMGzdO26FozL179/B///d/sLOzg6mpKXx9ffHvv/9qOyyNkcvlmDRpEry8vGBqaoqaNWti+vTpJZqzqCr6+++/0b17d7i6ukImk2H79u0q24UQmDx5MlxcXGBqaoqQkBBcv35dO8FWkBe9B3l5efj444/h6+sLc3NzuLq6YuDAgbh//772Ai5nL/tv4Fn/+9//IJPJsGDBAo3FxwRIQzZu3IiIiAhMmTIFp06dgr+/P0JDQ5GUlKTt0DTi4MGDGDVqFI4ePYq9e/ciLy8Pr7/+OrKysrQdmsadOHEC3333Hfz8/LQdisY8evQILVu2hKGhIf744w9cunQJX3/9NWxtbbUdmsbMnj0bS5cuxeLFi3H58mXMnj0bc+bMwaJFi7QdWoXIysqCv78/lixZUuT2OXPmYOHChVi2bBmOHTsGc3NzhIaG4smTJxqOtOK86D3Izs7GqVOnMGnSJJw6dQpbt27F1atX0aNHDy1EWjFe9t9AgW3btuHo0aNwdXXVUGT/EaQRTZs2FaNGjVK+lsvlwtXVVURGRmoxKu1JSkoSAMTBgwe1HYpGZWRkCB8fH7F3714RHBwsxo4dq+2QNOLjjz8WrVq10nYYWtW1a1cxZMgQlXVvvvmm6N+/v5Yi0hwAYtu2bcrXCoVCODs7i7lz5yrXpaamCmNjY7F+/XotRFjxnn8PinL8+HEBQNy5c0czQWlQcfcfFxcn3NzcxIULF4SHh4eYP3++xmJiC5AG5Obm4uTJkwgJCVGu09PTQ0hICKKjo7UYmfakpaUBAKpVq6blSDRr1KhR6Nq1q8p/C7pgx44daNy4Md5++204OjqiYcOGWLFihbbD0qgWLVogKioK165dAwCcPXsWhw8fRufOnbUcmebdunULCQkJKv8fWFtbIygoSGc/EwHpc1Emk8HGxkbboWiEQqHAgAED8OGHH6J+/foavz4nQ9WA5ORkyOVyODk5qax3cnLClStXtBSV9igUCowbNw4tW7ZEgwYNtB2OxmzYsAGnTp3CiRMntB2Kxt28eRNLly5FREQEPv30U5w4cQJjxoyBkZERBg0apO3wNOKTTz5Beno66tSpA319fcjlcnz55Zfo37+/tkPTuISEBAAo8jOxYJuuefLkCT7++GP069dPZyZInT17NgwMDDBmzBitXJ8JEGncqFGjcOHCBRw+fFjboWjM3bt3MXbsWOzduxcmJibaDkfjFAoFGjdujJkzZwIAGjZsiAsXLmDZsmU6kwD98ssv+Pnnn7Fu3TrUr18fZ86cwbhx4+Dq6qoz7wEVLS8vD3369IEQAkuXLtV2OBpx8uRJfPPNNzh16hRkMplWYuAjMA2wt7eHvr4+EhMTVdYnJibC2dlZS1Fpx+jRo/Hbb79h//79qF69urbD0ZiTJ08iKSkJjRo1goGBAQwMDHDw4EEsXLgQBgYGkMvl2g6xQrm4uKBevXoq6+rWrYvY2FgtRaR5H374IT755BP07dsXvr6+GDBgAD744ANERkZqOzSNK/jc42fi0+Tnzp072Lt3r860/hw6dAhJSUmoUaOG8jPxzp07GD9+PDw9PTUSAxMgDTAyMkJgYCCioqKU6xQKBaKiotC8eXMtRqY5QgiMHj0a27Ztw759++Dl5aXtkDSqQ4cOOH/+PM6cOaNcGjdujP79++PMmTPQ19fXdogVqmXLloWGPbh27Ro8PDy0FJHmZWdnQ09P9SNXX18fCoVCSxFpj5eXF5ydnVU+E9PT03Hs2DGd+UwEniY/169fx19//QU7Oztth6QxAwYMwLlz51Q+E11dXfHhhx/izz//1EgMfASmIRERERg0aBAaN26Mpk2bYsGCBcjKykJ4eLi2Q9OIUaNGYd26dfj1119haWmpfM5vbW0NU1NTLUdX8SwtLQvVO5mbm8POzk4n6qA++OADtGjRAjNnzkSfPn1w/PhxLF++HMuXL9d2aBrTvXt3fPnll6hRowbq16+P06dPY968eRgyZIi2Q6sQmZmZuHHjhvL1rVu3cObMGVSrVg01atTAuHHjMGPGDPj4+MDLywuTJk2Cq6srevXqpb2gy9mL3gMXFxe89dZbOHXqFH777TfI5XLl52K1atVgZGSkrbDLzcv+G3g+4TM0NISzszNq166tmQA11t+MxKJFi0SNGjWEkZGRaNq0qTh69Ki2Q9IYAEUuq1at0nZoWqNL3eCFEGLnzp2iQYMGwtjYWNSpU0csX75c2yFpVHp6uhg7dqyoUaOGMDExEd7e3uKzzz4TOTk52g6tQuzfv7/I/+cHDRokhJC6wk+aNEk4OTkJY2Nj0aFDB3H16lXtBl3OXvQe3Lp1q9jPxf3792s79HLxsv8GnqfpbvAyIV7RYUiJiIiIisEaICIiItI5TICIiIhI5zABIiIiIp3DBIiIiIh0DhMgIiIi0jlMgIiIiEjnMAEiIiIincMEiIgqxNSpUxEQEFCmc9y+fRsymQxnzpwpl5iK07ZtW4wbN65Cr0FElQsTICIddffuXQwZMgSurq4wMjKCh4cHxo4di5SUFLXPJZPJsH37dpV1EyZMUJnrqTTc3d0RHx9fbtOFHDhwADKZDKmpqSrrt27diunTp5fLNUpDU4keET3FBIhIB928eRONGzfG9evXsX79ety4cQPLli1TTtD78OHDMl/DwsKizJM76uvrw9nZGQYGFTttYbVq1WBpaVmh1yCiyoUJEJEOGjVqFIyMjLBnzx4EBwejRo0a6Ny5M/766y/cu3cPn332mXJfT09PTJ8+Hf369YO5uTnc3NywZMkSle0A8MYbb0AmkylfP/8IbPDgwejVqxdmzpwJJycn2NjY4IsvvkB+fj4+/PBDVKtWDdWrV8eqVauUxzzfMjJ48GDIZLJCy4EDBwAAP/74Ixo3bgxLS0s4OzvjnXfeQVJSkvJc7dq1AwDY2tpCJpNh8ODBAAo/Anv06BEGDhwIW1tbmJmZoXPnzrh+/bpy++rVq2FjY4M///wTdevWhYWFBTp16oT4+Phi3/NHjx6hf//+cHBwgKmpKXx8fJT36uXlBQBo2LAhZDIZ2rZtqzzu+++/R926dWFiYoI6derg22+/LfT+bNiwAS1atICJiQkaNGiAgwcPlui6RDpNY7OOEVGlkJKSImQymZg5c2aR24cPHy5sbW2FQqEQQkgTFFpaWorIyEhx9epVsXDhQqGvry/27NkjhBAiKSlJObFtfHy8SEpKEkIIMWXKFOHv768876BBg4SlpaUYNWqUuHLlivjhhx8EABEaGiq+/PJLce3aNTF9+nRhaGgo7t69K4QQygkjT58+LYQQIjU1VcTHxyuXsWPHCkdHRxEfHy+EEOKHH34Qu3btEjExMSI6Olo0b95cdO7cWQghRH5+vtiyZYsAIK5evSri4+NFamqqEKLwxLQ9evQQdevWFX///bc4c+aMCA0NFbVq1RK5ublCCCFWrVolDA0NRUhIiDhx4oQ4efKkqFu3rnjnnXeKfd9HjRolAgICxIkTJ8StW7fE3r17xY4dO4QQQhw/flwAEH/99ZeIj48XKSkpQgghfvrpJ+Hi4iK2bNkibt68KbZs2SKqVasmVq9erfL+VK9eXWzevFlcunRJDBs2TFhaWork5OSXXpdIlzEBItIxR48eFQDEtm3bitw+b948AUAkJiYKIaQEqFOnTir7hIWFKRMLIUSR5ysqAfLw8BByuVy5rnbt2qJ169bK1/n5+cLc3FysX79eCFE4AXrWli1bhImJiTh8+HCx93rixAkBQGRkZAghns5O/ejRI5X9nk2Arl27JgCIf/75R7k9OTlZmJqail9++UUIISVAAMSNGzeU+yxZskQ4OTkVG0v37t1FeHh4kduKu8+aNWuKdevWqaybPn26aN68ucpxs2bNUm7Py8sT1atXF7Nnz37pdYl0GR+BEekoIUSJ923evHmh15cvX1b7mvXr14ee3tOPHScnJ/j6+ipf6+vrw87OTvnYqjinT5/GgAEDsHjxYrRs2VK5/uTJk+jevTtq1KgBS0tLBAcHAwBiY2NLHOPly5dhYGCAoKAg5To7OzvUrl1b5Z7NzMxQs2ZN5WsXF5cXxj1y5Ehs2LABAQEB+Oijj3DkyJEXxpGVlYWYmBgMHToUFhYWymXGjBmIiYlR2ffZ34+BgQEaN26sjFXd6xLpCiZARDqmVq1akMlkxSYwly9fhq2tLRwcHMr92oaGhiqvZTJZkesUCkWx50hISECPHj0wbNgwDB06VLk+KysLoaGhsLKyws8//4wTJ05g27ZtAIDc3NxyvAtJUXG/KKns3Lkz7ty5gw8++AD3799Hhw4dMGHChGL3z8zMBACsWLECZ86cUS4XLlzA0aNHSxynutcl0hVMgIh0jJ2dHTp27Ihvv/0Wjx8/VtmWkJCAn3/+GWFhYZDJZMr1z3/hHj16FHXr1lW+NjQ0hFwur9jAATx58gQ9e/ZEnTp1MG/ePJVtV65cQUpKCmbNmoXWrVujTp06hVpkjIyMAOCFsdatWxf5+fk4duyYcl1KSgquXr2KevXqlSl+BwcHDBo0CD/99BMWLFiA5cuXFxuXk5MTXF1dcfPmTdSqVUtlKSiaLvDs7yc/Px8nT55U+f0Ud10iXVaxfUuJqFJavHgxWrRogdDQUMyYMQNeXl64ePEiPvzwQ7i5ueHLL79U2f+ff/7BnDlz0KtXL+zduxebNm3C77//rtzu6emJqKgotGzZEsbGxrC1ta2QuN99913cvXsXUVFRePDggXJ9tWrVUKNGDRgZGWHRokX43//+hwsXLhQa28fDwwMymQy//fYbunTpAlNTU1hYWKjs4+Pjg549e2L48OH47rvvYGlpiU8++QRubm7o2bNnqWOfPHkyAgMDUb9+feTk5OC3335TJimOjo4wNTXF7t27Ub16dZiYmMDa2hrTpk3DmDFjYG1tjU6dOiEnJwf//vsvHj16hIiICOW5lyxZAh8fH9StWxfz58/Ho0ePMGTIkJdel0iXsQWISAf5+Pjg33//hbe3N/r06YOaNWtixIgRaNeuHaKjo1GtWjWV/cePH49///0XDRs2xIwZMzBv3jyEhoYqt3/99dfYu3cv3N3d0bBhwwqL++DBg4iPj0e9evXg4uKiXI4cOQIHBwesXr0amzZtQr169TBr1ix89dVXKse7ublh2rRp+OSTT+Dk5ITRo0cXeZ1Vq1YhMDAQ3bp1Q/PmzSGEwK5duwo99lKHkZERJk6cCD8/P7Rp0wb6+vrYsGEDAKluZ+HChfjuu+/g6uqqTLSGDRuG77//HqtWrYKvry+Cg4OxevXqQi1As2bNwqxZs+Dv74/Dhw9jx44dsLe3f+l1iXSZTKhTCUlEOsfT0xPjxo3jVBGV0O3bt+Hl5YXTp0+XedoRIl3DFiAiIiLSOUyAiIiISOfwERgRERHpHLYAERERkc5hAkREREQ6hwkQERER6RwmQERERKRzmAARERGRzmECRERERDqHCRARERHpHCZAREREpHOYABEREZHO+X8zAGWviuArGQAAAABJRU5ErkJggg==\n"
          },
          "metadata": {}
        }
      ],
      "source": [
        "from matplotlib import pyplot as plt\n",
        "\n",
        "plt.title(\"Validation accuracies\")\n",
        "plt.plot(saved_accs_sym, \"b\", label=\"Symmetric\")\n",
        "plt.plot(saved_accs, \"g\", label=\"Standard\")\n",
        "\n",
        "plt.ylabel(\"Validation accuracy (%)\")\n",
        "plt.xlabel(\"Optimization steps\")\n",
        "plt.legend()\n",
        "plt.show()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "iilNBvUJPtCK"
      },
      "source": [
        "What we can see then is that by paying attention to the symmetries\n",
        "intrinsic to the learning problem and reflecting this in an equivariant\n",
        "gate set we have managed to improve our learning accuracies, while also\n",
        "using fewer parameters. While the symmetry-aware circuit clearly\n",
        "outperforms the naive one, it is notable however that the learning\n",
        "accuracies in both cases are hardly ideal given this is a solved game.\n",
        "So paying attention to symmetries definitely helps, but it also isn\\'t a\n",
        "magic bullet!\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "59M09yH_PtCK"
      },
      "source": [
        "The use of symmetries in both quantum and classical machine learning is\n",
        "a developing field, so we can expect new results to emerge over the\n",
        "coming years. If you want to get involved, the references given below\n",
        "are a great place to start.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "AfMCcW_QPtCK"
      },
      "source": [
        "References\n",
        "==========\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_Xne5NFbPtCK"
      },
      "source": [
        "Acknowledgments\n",
        "===============\n",
        "\n",
        "The author would also like to acknowledge the helpful input of C.-Y.\n",
        "Park.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_kP9cOTuPtCK"
      },
      "source": [
        "About the author\n",
        "================\n"
      ]
    }
  ],
  "metadata": {
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.9.17"
    },
    "colab": {
      "provenance": []
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}